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Abstract
We use detailed administrative data to study the adjustment of local labor markets to industrial
robots in Germany. Robot exposure, as predicted by a shift-share variable, is associated with
displacement effects in manufacturing, but those are fully offset by new jobs in services. The
incidence mostly falls on young workers just entering the labor force. Automation is related
to more stable employment within firms for incumbents, and this is driven by workers taking
over new tasks in their original plants. Several measures indicate that those new jobs are of
higher quality than the previous ones. Young workers also adapt their educational choices, and
substitute away from vocational training towards colleges and universities. Finally, industrial
robots have benefited workers in occupations with complementary tasks, such as managers or
technical scientists. (JEL: J24, O33, F16, R11)
Keywords: Automation, Labor Market Institutions, Skill Upgrading.

1. Introduction

How have new automation technologies, such as industrial robots, transformed the
labor market? Theoretical work on this question has identified two main impacts on
employment and wages (Acemoglu and Restrepo, 2018b, 2019). At first, the adoption
of automation technologies causes a displacement effect, as robots take over tasks
performed by humans. Sooner or later, however, productivity gains lead to new
jobs elsewhere in the economy. Careful empirical work is now needed to provide
evidence on those two channels. Furthermore, understanding and examining the
underlying mechanisms is crucial for a wide range of policy questions currently high
on the agenda. Displacements can trigger painful adjustments and large earnings
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losses (Jacobson et al., 1993), which might imply a bigger role for policies targeting
those hurt by automation technologies. Moreover, incumbent workers might need to
be re-trained in order to transition smoothly into new jobs, while young labor market
entrants might adapt their educational choices in anticipation of how technologies
have affected labor demand. Finally, different labor market institutions might
mediate the displacement and productivity effects very differently, thus providing
potential lessons how to maximize the positive impacts for society.

In this paper, we examine how firms and individual workers adjust to automation
exposure. The labor-replacing technology we focus on are industrial robots,
primarily used in the manufacturing sector. Following significant technological
advances, robotic capabilities have made great strides in limiting the need for human
intervention while autonomously operating production processes. According to
the International Federation of Robotics (2016), the stock of industrial robots rose
by a factor of five between 1993 and 2015 in North America, Europe, and Asia.
An estimated 1.5 million industrial robots are currently used. A large number
of industries have already undergone dramatic changes in the organization of
production in the last two decades, and labor markets were deeply affected.

We use Germany as our "laboratory" and make use of local labor market variation
as our main source. It is clear that Germany provides an important benchmark
case when it comes to the equilibrium effects of how labor markets adjust to the
rise of automation technologies. Figure 1 shows the penetration of robots, dividing
their stock by the number of workers in different regions of the world between
1994 and 2014. Korea (the world leader) and Germany are technologically much
more advanced in robotics than other countries in Europe and the United States.1

In addition, to get a solid understanding of the adjustment process and to grasp
the incidence of automation, one needs high-quality longitudinal data that allows
following workers over time across firms, occupations, and sectors. For this purpose,
we can leverage the extensive German matched employer-employee data extracted
from administrative social security records.

The first part of the paper replicates the strategy by Acemoglu and Restrepo
(2019), who have found alarmingly negative impacts on labor demand in the US.
We find no such negative effects of predicted robot exposure on total employment
in Germany, but show that this masks the presence of considerable displacement and
reallocation effects. Within manufacturing, predicted robot exposure leads to fewer
jobs, but new labor demand in the service sector – in particular local services used
by other businesses – leads to an offsetting force. We then extend the literature in
three different ways, which we describe now.

1Another leading country in robot use is Japan. However, as already pointed out by Graetz and
Michaels (2018) and Acemoglu and Restrepo (2019), the data on robots in Japan is difficult to compare
to that from other countries, because there was a major re-classification of what kind of machines are
classified as robots.
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FIGURE 1. Robot penetration, 1994-2014

Notes: Europe = Germany, France, Italy, Spain, Finland, Sweden, Norway, UK. Robot penetration is the robot stock
relative to the dependent employment in full-time equivalents (FTE). Employment data from the IAB for Germany and
from OECD.Stat for the remaining countries. Dependent employment in Korea was imputed from total employment
and the ratio of dependent to total employment in the European countries, where data on both dependent and total
employment is available.
Source: IFR, OECD, and BEH V10.01.00, own calculations.

The second main contribution of this paper is a complete characterization of the
incidence of the displacement and reallocation effects. The main finding is that the
majority falls on young workers just entering the labor force. They face lower labor
demand in automating industries and adjust by taking over jobs in the expanding
service sector.2 Incumbent workers, maybe paradoxically at first glance, actually see
an increase in their plant-tenure in response to more automation.

Our third main contribution shows that this latter effect – i.e. automation causing
more stable employment within firms – is driven by workers taking over new roles
within their original plants. Displacement of old tasks, hence, takes place. But it
is swiftly offset by transitions of incumbent workers into new tasks for the same
employer. Several measures indicate that those new jobs are of higher quality than
the previous ones: the new occupations pay higher wages, are characterized by a
larger share of abstract instead of routine tasks, and a higher college share. Young
workers in local labor markets with more predicted exposure to automation also

2Reallocation for young workers, hence, only happens in a counterfactual sense, as they start their
careers in the service sector instead of manufacturing.
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adapt their educational choices. They substitute away from vocational training and
towards colleges and universities. So, although the incidence of displacement out
of manufacturing jobs falls mostly on young cohorts, the overall welfare effects of
automation on young workers are less clear and might possibly be even positive in
the longer term.3

In the fourth and final contribution, we shift our focus from local labor market
adjustments to individual workers. This complements the previous models, because
it allows to directly study the effects of automation on earnings biographies using
a more compelling design (comparing wage or earnings growth across local labor
markets, in contrast, can lead to biased results because automation changes the
composition of employed workers). At the individual level, we can follow the
same workers, who start competing with industrial robots, over time and across
all possible margins of adjustments (plants, occupations, sectors). One key result of
the analysis is that average earnings are hardly affected by robots. But effects differ
strongly across workers with different adjustment patterns: those who are retained
by their plants experience positive earnings effects as they transition into new tasks.
Workers who are forced to switch plants, industries, or leave manufacturing see
significant earnings losses, however. Finally, we show how industrial robots have
benefited workers in occupations with complementary tasks, such as managers or
technical scientists, while those in routine-intensive tasks like, for example, machine
operators. In contrast, the impact across skill groups, i.e., comparing workers with
and without tertiary education, is quite homogeneous.

Stated differently, we cannot detect evidence of skill-biased technological
change. Automation mostly increases inequality within groups of ex-ante similar
manufacturing workers. It creates large gaps between those who manage to stay
at their original plant (thereby reaping the benefits of automation through longer
tenure and higher wages), and those who are forced to leave their original employer,
as they typically face an earnings drop and do not easily recover.

The theoretical implications of automation for wages, employment, and
productivity have been studied by Acemoglu and Restrepo (2018b), Acemoglu and
Restrepo (2019), and Moll et al. (2019).4 The important empirical paper by Acemoglu
and Restrepo (2019) has documented negative effects of robots on wages and
employment across US commuting zones, implying strong displacement forces and
relatively weak offsetting productivity effects. Replicating this empirical strategy
for Germany, we also find significant displacement effects, although around 50%
smaller on average. The key difference, however, is that we additionally identify
significant and offsetting reallocation effects. Concerning the displacement effect,

3Plausibly, as a result of more young workers entering the labor market with a college degree, we
also see an increase in jobs held with a higher abstract task share for young cohorts; these jobs are
typically higher rewarded.

4Those papers build on an older literature, which highlights the usefulness of the tasks framework
for explaining a variety of empirical findings concerning the distribution of wages and employment –
see Acemoglu and Autor (2011) for an exhaustive survey.
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we find that it is concentrated in local labor markets with weaker labor protections
(as measured by the strength of unions). This hints at the importance of labor market
institutions in explaining how countries adapt differently to new technologies.

The data assembled by the International Federation of Robotics (IFR) was
first exploited in the innovative paper by Graetz and Michaels (2018). Consistent
with our results, they uncover positive productivity effects and zero effects on
total employment, using variation in robot usage across industries in different
countries. As our analysis shows, however, this zero overall employment impact
can mask substantial displacement and reallocation effects. We complement Graetz
and Michaels (2018) (and also Acemoglu and Restrepo, 2019), by providing the first
study that leverages administrative labor market data. We can, therefore, investigate
the underlying mechanisms in much greater detail; in particular, if workers separate
from firms, how the set of tasks carried out by exposed workers evolves in response
to automation, and what role the transitions of individual workers across industries
and sectors play.5

An important part of the adjustment process to automation is the skill upgrading
process, as our evidence shows. Changes in the demand for high-skilled workers
also feature prominently role in the polarization literature (Michaels et al., 2014;
Autor and Dorn, 2013; Goos et al., 2014). We document direct and indirect evidence
for two margins of human capital adjustments to robots: first, for incumbent
workers who are retained but transition into better jobs within their original plants,
and second, for young labor market entrants. The first channel of within-firm
upgrading is consistent with the famous plant-level study by Bartel et al. (2007)
on American valve-makers. They chronicle how the adoption of new IT-enhanced
capital equipment leads to increases in the skill requirements of machine operators
and a transition from routine to abstract/cognitive tasks.6 Finally, our analysis
reveals that the reallocation effect is driven by increased employment in the business
service sector, showing that the spillovers seem to operate locally through firms
expanding their demand for complementary tasks. Relatedly, Helm (2019) also finds
positive local spillovers of export shocks across German labor markets, consistent
with agglomeration economies.

The remainder of this paper is organized as follows. Section 2 describes our
empirical approach and the data. Section 3 studies the impact of robots on
equilibrium employment, wages, and productivity across local labor markets.
Sections 4 and 5 investigate adjustment mechanisms. Section 6 studies the
adjustments of individual workers. Section 7 concludes.

5It is reasonable to assume that displacement and productivity effects are very heterogenous
depending on the type of technology and industry considered. Zator (2019) combines different measure
of technological change (software, databases, robots) and argues that technology tends to reduce
employment in manufacturing but increases it in finance, IT, and other service industries.

6Notably, the plants in the study accompanied the transition process with the adoption of new
human resource practices to support these skills.
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2. Data and Methodology

2.1. Administrative Labor Market Data

Our main source is administrative German labor market data provided by the
Institute for Employment Research (IAB) at the German Federal Employment
Agency. Specifically, we use data from the Employee History (Beschäftigtenhistorik
– BEH, Version V10.01.00). The raw version of the BEH is a spell-dataset of
the complete job histories of the universe of private workers from 1978 to 2014,
excluding the self-employed and civil servants. Eastern Germany enters the data
in 1992. We use a simplified version of this dataset, which contains only one
observation for each individual and year, pertaining to the spell of the highest paid
job that stretches over June 30th of a given year.7 The individual-level information
contains information on gender, year of birth, educational attainment, a unique
plant-id for the current workplace, as well as codes for industrial affiliation, location,
and occupations.8 This allows us to aggregate the dataset to the county-level and
obtain a precise picture on the size, the industry composition, and the workforce
characteristics of local labor markets. Moreover, the worker-level panel structure of
the dataset allows us to observe the mobility patterns of individuals as they enter the
labor market, move between jobs, firms, industries, and regions, and finally when
they exit the labor market. We mainly work at the level of local labor markets. Our
main outcome is the percentage change in a county’s employment. We construct
this from the aggregate worker counts on June 30 of the start year 1994 and the
end year 2014, where part-time workers are weighted by 0.5 to get a measure for
full-time equivalent employment. The information on the industry of the workplace
plant allows us to construct this variable separately for the manufacturing and non-
manufacturing sectors. The advantage of using percentage changes rather than the
log-difference is that this growth rate can be decomposed into the contributions of
various groups defined by worker mobility, such as workers who enter the labor
market, workers who stay with their original plant, workers who move to a different
plant in the same industry, etc.

Our second outcome variable is the log change in average wages. To construct
this variable, we first impute the individual wages, which are censored at the social
security contribution ceiling, using a procedure suggested by Card et al. (2013). We
then compute the average daily wage for full-time workers on June 30 of the start
and end year for demographic cells defined by gender, three age groups (below 30,

7In the baseline regressions, we also drop observation on so-called "marginal jobs", since those are
only included in the data from 1999 onward. Those jobs are very low-paying (the threshold is around 450
Euro per month) in part-time, which get special treatment in the form of heavily reduced social security
contributions. We report a robustness check in the appendix including these jobs. The main results are
unaffected.

8We distinguish between 102 2/3 digit NACE Rev. 2 industries, 402 counties, and 54 occupational
fields.
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30 to 44, 45 or more years old), and three education groups (no or unknown degree,
vocational training degree, university degree). A further dependent variable is the
total annual wagebill, which is 365 times the individual daily wage, aggregated to
the county-level. To compare our results to the findings of Acemoglu and Restrepo
(2019), we also construct the change in the employment-to-population ratio as a
further outcome variable. The employment numbers again stem from the aggregate
BEH data, while population counts stem from the German Federal Institute for
Research on Building, Urban Affairs and Spatial Development (BBSR).9

2.2. Robot Usage

We combine our administrative labor market data set with data on the stock of
robots for 25 industries in 50 countries over the period from 1994 to 2014 from
the International Federation of Robotics (IFR). This data set has been used before
by Graetz and Michaels (2018) in a cross-country study at the industry level and
by Acemoglu and Restrepo (2019) for the USA. A robot in this data is defined as
an “automatically controlled, re-programmable, and multipurpose machine”. As
explained in more detail in International Federation of Robotics (2016), this means
that robots are “fully autonomous machines that do not need a human operator and
that can be programmed to perform several manual tasks such as welding, painting,
assembling, handling materials, or packaging.” Single-purpose machines such as
elevators or transportation bands are, by contrast, no robots in this definition, as
they cannot be reprogrammed to perform other tasks, require a human operator, or
both. These data are based on yearly surveys of robot suppliers and capture around
90 % of the world market. The information is broken down at the industry level.10

The industry classification of this data conforms to 2-digit ISIC Rev. 4 codes, where
3-digit information is available for manufacturing of electronic devices, electrical
equipment, and motor vehicles. Since our administrative data has time-consistent
NACE Rev. 2 industry codes, which correspond to the ISIC Rev. 4 codes at the 2/3-
digit level, both datasets can be matched without using any further crosswalk.11

The 25 industries consist of 20 manufacturing industries, agriculture, mining,
electricity/gas/water supply, construction, and education. Appendix Figure A.1
illustrates the change in the number of robots per thousand workers in all 25
industries. We also present the US numbers there to facilitate a comparison. By far

9Two final outcome variables come from the German Federal Statistical Office and relate to the
productivity of the regional economy. These are the log change in GDP per worker and the percentage
point change in total regional GDP.

10Data availability differs across countries, but coverage is comprehensive for Germany. As Graetz
and Michaels (2018), we do not use the IFR industries all other manufacturing, all other non-manufacturing,
and unspecified. Those categories cover less than 5% of the total robot stock in Germany.

11Data used for a previous version of this paper (Dauth et al., 2017b) only had time consistent NACE
Rev. 1 codes. This required us to construct a crosswalk from the IFR classification to the classification of
the labor market data, where we apportioned ambiguous cases according to employment shares. The
results were qualitatively very similar.
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the strongest increase can be observed in the different branches of the automobile
industry (motor vehicles, auto bodies and parts). Here, more than 100 additional
robots were installed per thousand workers in 2014 compared to 1994. Other
industries that became vastly more robot-intensive include rubber and plastic
products, electronic components, and domestic appliances. On the other side of the
spectrum, we find cases where robot usage has hardly changed, and sometimes (e.g.,
in manufacturing of instruments for measuring) it even decreased over time. In non-
manufacturing industries, robots are used much less than in manufacturing.

2.3. Local Labor Market Approach

Our research design, which is motivated by the important paper from Acemoglu
and Restrepo (2019), is based on the fact that local labor markets differ markedly in
their industry compositions. Those differences create varying predicted exposure to
technological change, such as rising availability of industrial robots.12 The regional
perspective allows us to observe equilibrium adjustments and spillovers from
directly affected to indirectly affected industries.13

Ideally, we would observe the actual number of robots in each region. However,
the comprehensive IFR data on robot use is available only at the country-by-industry
level. We therefore follow Acemoglu and Restrepo (2019) and use a shift-share
design to apportion each industry’s robot adoptions across regions according to
their shares of the industry’s total employment. This approach is common practice
in studies where an industry-level shock has differential effects on regions due to
differences in local industry structures, for example in the case of import competition
(Autor et al., 2013). Concretely, as our main variable of interest throughout the
regional analysis, we refer to the change in predicted robot exposure in region r,
which is constructed as follows:

̂∆robotsr =
J∑

j=1

(
empjr

empr

× ∆robotsj
empj

)
with J = 25. (1)

The term ∆robotsj
empj

measures the national industry robot adoption as the increase
in the robot count in industry j relative to its workforce size in the base year
1994. We allocate this industry-level exposure to regions according to their shares
of national industry employment by multiplying ∆robotsj with empjr, which is

12Faber (2020) extends this approach and regresses employment changes in Mexican labor markets
on an adjusted measure of exposure to robots adopted in other countries, US robots in their particular
study.

13As is widely discussed in the literature, regional difference-in-difference designs have well-known
limitations when it comes to gauging absolute or national impacts. But, relative to other structural
approaches, the design offers more transparent and clearer identification. The results from various
strands of literature show that many equilibrium adjustments take indeed place at the local labor market
level (Moretti, 2011).
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the initial employment in industry-region cell jr. For each local labor market r, we
sum the predicted exposures of all local industries and scale it by the region’s total
employment empr, also measured in the base year 1994. ̂∆robotsr, therefore, does
not measure the actual increase in the number of robots in region r but rather the
predicted increase, assuming that robot adoption per worker in each industry was
uniform across regions.

In a recent paper, Adão et al. (2019) point out that such a shift-share explanatory
variable can cause problems with statistical inference: Regions with similar industry
structures are likely to have correlated error terms, which means that conventional
standard errors may be underestimated. Adão et al. (2019) propose to account for
this by calculating standard errors in a cluster-robust fashion, where the correlation
structure of the error terms is represented by a matrix of regional industry shares
rather than by discrete clusters. We adopt their construction of robust standard
errors and also apply their adjustment for small industry numbers by imposing the
null hypothesis of the true coefficient being zero.14

The identification of the effects of robots on the labor market builds on the
assumption that differences in predicted robot exposure across industries are
generated because robots have become better usable in some industries than in
others. However, the pattern of predicted robot exposure in Germany may be the
result of domestic industry-specific demand shocks. To address this endogeneity
concern, we also apply the instrumental variable strategy proposed by Acemoglu
and Restrepo (2019). In this approach, we employ robot adoptions across industries
in other high-income countries as an instrument for German predicted robot
exposure.15 More specifically, we construct the instrumental variables analogously
to equation 1, but use the increases in the robot count in the same set of industries
in each other country, and lagged employment counts from 1984 for normalization
and apportioning across regions.16

Figure 2 summarizes our empirical approach. The horizontal axis shows
the variation of the predicted regional robot exposure, conditional on regional
employment shares in nine broad industry groups and federal state dummies. The
most robotized regions are Wolfsburg, Dingolfing-Landau, and Ingolstadt, which
are heavily concentrated in the automotive industry (Volkswagen, Audi, and BMW
produce there, respectively). In our empirical analysis, we will pay attention to
the special role of the automobile industry in robustness checks. But also aside

14The exact procedure is laid out in Remarks 5 and 6 in Adão et al. (2019). We thank Michal Kolesár
for very valuable advice how to adapt their standard error adjustment for the overidentified IV case.

15See Autor et al. (2013) and Bloom et al. (2016) for similar approaches to study the effects of Chinese
import competition. The validity of this approach hinges on the assumption that the industry pattern
of robot adoption is an exogenous shock, while the allocation of industries across regions may be
endogenous (see Borusyak et al., 2018, for technical details).

16We construct one instrument for each country k = (Spain, Finland, France, Italy, Norway, Sweden, and UK)
and estimate an over-identified model. In a further robustness check, we also aggregate the robot
exposures of all k countries to build a single instrument in a just identified 2SLS model. Notice that it is
not possible to use time lags for East German regions; here we are confined to use 1994 in the deflator.
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FIGURE 2. Region-level predicted exposure to robots and employment growth.

Notes: The figure displays the correlation of the predicted increase in exposure to robots (conditional on regional
employment shares in nine broad industry groups and federal state dummies) and the growth rate of full-time
equivalent jobs between 1994 and 2014 at the level of 402 German local labor markets.
Sources: IFR and BEH V10.01.00, own calculations.

from those extremes, the variation across regions is substantial. There is no positive
relation with employment growth. In our empirical analysis in Section 3, we discuss
this result in more detail.

2.4. Descriptive Overview

Table 1 provides a descriptive overview of the data for the local labor market
analysis. The average region saw a slight decline in employment. When weighting
by the number of full-time equivalent jobs in 1994, this decline becomes sharper,
which demonstrates that larger regions declined more strongly.17 The overall
decline stems mostly from the declining manufacturing sector, which has not been
compensated by growth of non-manufacturing industries. Wages (deflated to 2010
Euro) have increased on average, but more strongly in the manufacturing sector than

17Note that this picture changes when part-time jobs are not weighted down. In this case, the growth
rate of the total number of jobs is positive.
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in other sectors. These insights are also reflected in the changes of the total wagebill
(the product of employment and wage) and the employment-to-population ratio.

Panel B of this table presents averages and standard deviations of control
variables. We control for the shares of women, foreigners, workers older than 50,
and workers with a college degree, as well as the employment shares of nine broad
industry categories. In our empirical analysis we also disentangle robots from two
other major economic shocks that have affected Germany since the beginning of
the 1990s: The increasing international trade with China and Eastern Europe, and
increasing investments in information and communication technologies (ICT). Both
may have contributed (positively or negatively) to the probability of displacement
for workers, thus leading to heterogeneous wage and employment effects for
different individuals. We therefore use data from the UN Comtrade database and
EU KLEMS on industry level net-exports and ICT investment, respectively, to
construct two further shift-share variables, which both have positive averages.18

Finally, we report the means and deciles of the measure of predicted robot
exposure in Panel C. In the average region, the predicted number of robots has
increased by around 4.6 robots per 1000 workers. However, as shown in Figure 2,
the distribution is skewed to the right, with a handful of very large values.

2.5. Regressions Models

In Sections 3 to 5 we estimate the following model at the local labor market level:

∆Yr = α · x′r + β1 · ̂∆robotsr + β2 · ∆̂trader + β3 · ∆̂ICTr + ϕREG(r) + εr. (2)

We regress a change – sometimes a percentage change – of an outcome variable,
such as total employment, manufacturing employment, or the employment-to-
population ratio, over the period 1994-2014, on the change in the predicted number
of robots per worker (i.e., on ∆robotsr as defined in (1)). In the vector x′r we control
for detailed demographic characteristics of the local workforce (such as age, gender,
and qualification) in levels, aggregated up from the universe of individual social
security records. To avoid contamination by the endogenous adjustment of the local
labor force after the shock, we use levels before the start of the periods rather than
changes. We also include the employment shares of nine broadly defined industry
groups, four broad region dummies, and the predicted local exposures to net exports
and ICT usage.

18For the measurement of predicted trade exposure, we closely follow Dauth et al. (2017a) and
Dauth et al. (2021), who compute the increase in German net exports vis-à-vis China and 21 Eastern
European countries over the period 1994-2014 for every manufacturing industry j using UN Comtrade
data, normalized by the initial wage bill to account for industry size. For ICT, we exploit information
about installed equipment at the industry level as provided in the EU KLEMS database. It is defined as
the change in real gross fixed capital formation volume per worker for computing and communications
equipment from 1994 to 2014.
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TABLE 1. Summary statistics, region level 1994-2014

unweighted weighted
observations 402 23,884,076

mean ( sd ) mean ( sd )

[A] Outcomes
% change in total employment -1.048 ( 17.944 ) -2.923 ( 15.854 )
% change in manuf. employment -9.716 ( 25.432 ) -16.859 ( 23.710 )
% change in non-manuf. employment 4.736 ( 22.406 ) 3.737 ( 20.723 )
100 x ln-change in average wage 32.640 ( 10.022 ) 32.751 ( 9.468 )
100 x ln-change in average wage, manuf. 40.033 ( 15.692 ) 40.479 ( 14.178 )
100 x ln-change in average wage, non-manuf. 28.922 ( 11.731 ) 29.536 ( 11.143 )
100 x ln-change in total wagebill 37.076 ( 18.774 ) 36.236 ( 16.832 )
100 x ln-change in total wagebill, manuf. 33.004 ( 32.597 ) 26.152 ( 31.625 )
100 x ln-change in total wagebill, non-manuf. 38.184 ( 20.795 ) 39.073 ( 19.610 )
%-point change in emp/pop-ratio -0.369 ( 3.643 ) -1.131 ( 3.549 )
%-point change in emp/pop-ratio, manuf. -0.851 ( 2.328 ) -1.417 ( 2.285 )
%-point change in emp/pop-ratio, non-manuf. 0.482 ( 3.281 ) 0.286 ( 3.294 )
100 x ln-change in GDP per worker 46.529 ( 21.149 ) 43.455 ( 19.419 )

[B] Control variables
% female 34.715 ( 4.674 ) 35.155 ( 4.706 )
% foreign 6.981 ( 4.782 ) 8.071 ( 5.147 )
% age ≥ 50 years 20.101 ( 2.366 ) 21.192 ( 2.450 )
% unskilled 11.063 ( 4.435 ) 10.794 ( 4.218 )
% vocational training 80.296 ( 4.117 ) 78.220 ( 4.851 )
% university degree 7.956 ( 3.965 ) 10.154 ( 4.592 )
% manufacturing 30.473 ( 12.559 ) 27.773 ( 12.880 )
% food products 3.443 ( 2.076 ) 2.814 ( 1.752 )
% consumer goods 4.609 ( 4.012 ) 3.876 ( 3.494 )
% industrial goods 11.846 ( 7.516 ) 10.491 ( 7.725 )
% capital goods 11.048 ( 8.733 ) 11.069 ( 8.315 )
% construction 13.562 ( 4.717 ) 12.514 ( 4.773 )
% maintenance; hotel & catering 19.231 ( 4.469 ) 19.594 ( 4.193 )
% services 14.186 ( 5.271 ) 17.908 ( 7.864 )
% public sector 19.913 ( 6.397 ) 19.963 ( 6.312 )
dummy, 1=north 0.159 ( 0.366 ) 0.149 ( 0.357 )
dummy, 1=south 0.348 ( 0.477 ) 0.282 ( 0.451 )
dummy, 1=east 0.192 ( 0.394 ) 0.230 ( 0.421 )

∆ net exports in 1000 eper worker 0.956 ( 3.146 ) 1.002 ( 2.758 )
∆ ICT equipment in eper worker 661.942 ( 157.081 ) 733.603 ( 185.298 )

[C] Predicted exposure to robots
∆ predicted robot exposure 4.617 ( 8.028 ) 4.642 ( 7.808 )
p10-p90 interval [ 0.982 ; 8.527 ] [ 0.982 ; 8.527 ]
p25-p75 interval [ 1.438 ; 4.540 ] [ 1.394 ; 5.108 ]

Notes: Summary statistics of region level variables. In Columns 3 and 4, the data is weighted by full-time-equivalent
number of jobs in 1994. The variable of interest is the change in predicted robot exposure per 1000 workers between
1994 and 2014.
Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.
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As discussed above in Section 2.3, for inference we apply the method proposed
by Adão et al. (2019). In the tables, we label them shift-share standard errors. We
additionally present conventional standard errors, using 50 clusters which represent
a higher geographical aggregation of local labor markets.19 On average, the shift-
share standard errors tend to be larger, thus making inference more conservative.

2.6. Balancing Tests

We conduct several balancing tests how important regional economic indicators
in the base year are correlated with predicted robot exposure between 1994 and
2014. Although our model specification should filter out long-run level differences
between regions, it is informative to gauge if other regional characteristics might be
confounded with predicted automation.

Panel A of Table 2 shows the coefficients when five different baseline variables
from 1994 are regressed on predicted robot exposure and a constant. Robot exposed
labor markets tend to have slightly higher income (GDP) per capita (but the standard
error is relatively large when using the inference suggested by Adão et al. (2019)).
The unemployment rate and skill shares are not associated with future predicted
robot exposure. The last column shows a strong association with the relative size of
the manufacturing sector, but this should not be surprising: almost all automation
analyzed in this paper happens in the manufacturing sector, as discussed above in
Section 2.2. Nonetheless, it becomes clear why controlling for sectoral employment
shares in local labor markets is important.20 In further robustness checks, we
additionally control for pre-trends in manufacturing sector growth and not only for
the initial levels.

In Panel B, we present the coefficients on future predicted robot exposure when
including our set of control variables in the regressions. The skill shares and
sectoral employment shares are among our set of controls, which is why these
variables drop out. The coefficient in column 1 is now very close to zero in the log
income regression, and the coefficient in the unemployment regression stays small
in magnitude. In Table A.1 in the appendix, we additionally go further back in time
and present the conditional correlation of similar regional indicators in 1978 and
1984 with future predicted robot exposure. The results are unaffected and only the
relative size of the manufacturing sector is associated with future predicted exposure
to automation, once control variables are taken into account.21

19These 50 clusters are highly aggregated labor market regions defined for use in German regional
policy. Most economic interactions should be confined to those areas.

20We use employment shares for nine industry groups which also controls for secular trends within
manufacturing categories. The groups are agriculture; food products; consumer goods; industrial goods;
capital goods; construction; consumer related services; business related services and the public sector.

21We can naturally only use Western German regions here. Because total income (GDP) is not
available for those years, we use average residualized log wages instead. Here, gender, and age effects
are controlled in worker level regressions in a first step, and, in a second step, residualized log wages
are averaged at the local labor market level.
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TABLE 2. Balancing tests for regional characteristics in 1994

Dependent variable:
ln(GDP % unemp. % high % un- % manuf.
capita) rate skilled skilled employment

(1) (2) (3) (4) (5)

[A] Unconditional

4 predicted robot exposure 0.0099 -0.0153 -0.0335 0.0685 0.6580
(0.002) (0.035) (0.022) (0.039) (0.076)
[0.010] [0.040] [0.039] [0.042] [0.464]

R2 0.067 0.002 0.005 0.017 0.204

[B] Conditional on full controls

4 predicted robot exposure -0.0018 0.0119
(0.003) (0.023)
[0.002] [0.033]

R2 0.779 0.682

Notes: N = 402 local labor market regions (Landkreise und kreisfreie Staedte, GDP data not available for the two East
German regions Eisenach and Wartburgkreis). Two-stage least squares (2SLS) IV regressions, where German
predicted robot exposure is instrumented with robot installations across industries in other high-income countries.
Each entry represents the coefficient of a regression of the respective variable on the change in predicted robot
exposure per 1000 workers between 1994 and 2014. All specifications include a constant. In panel B, we control for
broad region dummies (west (reference); north; south; or east), employment shares of female, foreign, age≥ 50,
medium skilled (with completed apprenticeship), and high skilled (with a university-degree) workers relative to
total employment (reference category: unskilled workers and with unknown education), broad industry shares
(agriculture (reference); food products; consumer goods; industrial goods; capital goods; construction; consumer
related services; business related services; public sector), and the change in German net exports vis-à-vis China and
21 Eastern European countries (in 1000 eper worker), and the change in ICT equipment (in eper worker), both
between 1994 and 2014. Standard errors clustered at the level of 50 aggregate labor market regions in parentheses.
Shift-share standard errors in brackets.
Sources: IFR, Comtrade, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

3. Baseline Effects

In this section, we present our baseline results for the impact of robots on
employment, wages, wage bills, and employment-to-population ratios, and we
conduct a number of robustness checks.

3.1. Employment Effects

In Table 3, we first look at employment changes in percentage terms, using OLS
regressions in Panel A.22 We include a separate row for the shift-share standard
errors using the method proposed by Adão et al. (2019), while reporting the

22Using changes in log employment yields very similar results. We prefer the percentage changes,
since they allow for a clean additive decomposition into various channels. This will be the focus of
Section 4.
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TABLE 3. Robot Exposure and Employment

Dependent variable:
% change in total employment between 1994 and 2014

(1) (2) (3) (4)

[A] OLS

4 predicted robot exposure 0.0541 -0.0357 -0.0635 0.0866
(0.107) (0.126) (0.122) (0.122)
[0.088] [0.119] [0.121] [0.163]

R2 0.503 0.567 0.571 0.583

[B] 2SLS

4 predicted robot exposure 0.0675 -0.0519 -0.0780 0.0686
(0.106) (0.133) (0.129) (0.137)
[0.084] [0.136] [0.136] [0.177]

% manufacturing -0.0992
(0.166)

% food products 2.4866 2.4577 2.3962
(0.460) (0.459) (0.438)

% consumer goods 0.4806 0.5593 0.5320
(0.314) (0.319) (0.305)

% industrial goods 0.5793 0.5487 0.5418
(0.278) (0.285) (0.267)

% capital goods 0.9418 0.9051 0.9130
(0.273) (0.284) (0.264)

% construction 1.0271 1.0108 1.0287
(0.295) (0.298) (0.279)

% consumer services 1.4895 1.4837 1.6150
(0.354) (0.359) (0.347)

% business services 0.4554 0.4495 0.8158
(0.294) (0.295) (0.269)

% public sector 0.9016 0.8935 1.0742
(0.271) (0.273) (0.260)

4 net exports in 1000 eper worker 0.3879 0.3743
(0.218) (0.216)

4 ICT equip. in 1000 eper worker -0.0245
(0.007)

Kleibergen-Paap weak ID test 562.668 391.407 383.098 378.041
Hansen J p-value 0.426 0.235 0.227 0.210

Notes: N = 402 local labor market regions (Landkreise und kreisfreie Staedte). Regressions of total employment growth
(in %) on the change in predicted robot exposure per 1000 workers between 1994 and 2014. All specifications include
a constant, broad region dummies indicating if the region is located in the north, west, south, or east of Germany and
demographic control variables, measured in the base year 1994. The demographic control variables are the
employment shares of female, foreign, age≥ 50, medium skilled (with completed apprenticeship), and high skilled
(with a university-degree) workers relative to total employment (reference category: unskilled workers and with
unknown education). In column 1, we control for the manufacturing share in total employment. In columns 2-4, we
instead include broad industry shares to control better for regional industry patterns. Industry shares cover the
percentage of workers in nine broad industry groups (agriculture (reference); food products; consumer goods;
industrial goods; capital goods; construction; consumer related services; business related services; public sector) in
the base year 1994. Columns 3 and 4 successively take into account the change in German net exports vis-à-vis China
and 21 Eastern European countries (in 1000 eper worker), and the change in ICT equipment (in eper worker), both
between 1994 and 2014. Panel B reports results of a two-stage least squares (2SLS) IV approach where German
predicted robot exposure is instrumented with robot installations across industries in other high-income countries.
Standard errors clustered at the level of 50 aggregate labor market regions in parentheses. Shift-share standard errors
in brackets.
Sources: IFR, Comtrade, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.
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conventional standard errors (allowing for 50 regional clusters) in parentheses below
the estimates.

Column 1 presents a parsimonious specification with the initial manufacturing
and regional dummies as the only additional control variables. The estimated effect
is positive, but very small and statistically insignificant. Quantitatively, comparing a
local labor market at the 75th percentile of predicted robot exposure to a local labor
market at the 25th percentile, the magnitudes imply that the highly exposed market
experiences 0.155% points ([4.540 − 1.438] × 0.05 = 0.155) higher employment
growth, which translates into roughly 100 additional (full-time equivalent) jobs for
an average region.

The estimates remain small and statistically insignificant as we enrich the
specifications. First, we include the initial employment shares of nine broad
industry groups instead of the overall manufacturing share, as there may be more
fine-grained industry trends (correlated with employment outcomes and robot
installations) within the manufacturing sector. Yet, the coefficient in column 2 stays
close to zero.

Column 3 adds the predicted trade exposure of local labor markets, using exports
and imports with Eastern Europe and China as described in Section 2.4.23 Column 4
additionally includes predicted exposure to ICT investments. The inclusion of both
variables clearly has a visible effect on the main coefficient, moving its magnitude
by around 0.03 and 0.15 points. However, the main results remain unaffected, and
the coefficient estimates imply only small employment effects of automation.

Panel B shows the results when the regressions are estimated with 2SLS.
First, across the different specifications, the 2SLS estimates are close to their OLS
counterparts. The Kleibergen and Paap (2006) statistic indicates there is no problem
of weak instruments, and the Hansen test values imply no rejection of the null
hypothesis of valid instruments. For the remainder of this paper we will focus on
the instrumental variable estimates; the corresponding OLS estimates are shown in
the online appendix.

3.2. Displacement versus Reallocation

3.2.1. Manufacturing and Services. We next study the displacement and reallo-
cation/productivity effects of automation separately. To analyze decomposition
effects, we opt for (arguably) the most transparent cut of the data. In particular,
the displacement of workers should occur within the robot-adopting manufacturing
sector. At the same time, the demand for labor in all other local industries increases
when industries are gross complements in the production of a final consumption

23As is well known, Germany is a very export-oriented economy. If export intensive industries
also rely more heavily on robots, this might alleviate possible job losses from technological change.
Conversely, robots might have lowered production costs and thus spurred demand for German
products.
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good. A plausible hypothesis is thus that service industries should see an increase
in labor demand.

TABLE 4. Composition Effects

Total Manufacturing Non-manufacturing

(1) (2) (3) (4) (5) (6) (7)

[A] Employment: % change in total employment between 1994 and 2014

4 predicted robot exposure 0.0686 -0.5938 -0.6212 -0.4663 0.5847 0.5638 0.7243
(0.137) (0.166) (0.158) (0.160) (0.325) (0.321) (0.327)
[0.177] [0.314] [0.311] [0.293] [0.394] [0.401] [0.458]

[B] E/Pop: 100 x4 in employment/population between 1994 and 2014

4 predicted robot exposure 0.0084 -0.0512 -0.0557 -0.0479 0.0457 0.0445 0.0563
(0.062) (0.025) (0.025) (0.027) (0.046) (0.046) (0.046)
[0.031] [0.034] [0.033] [0.030] [0.037] [0.038] [0.044]

Effect of 1 robot 0.3 -1.8 -2.0 -1.7 1.6 1.6 2.0

[C] Wages: 100 x Log-4 in average wage between 1994 and 2014

4 predicted robot exposure -0.0402 -0.1459 -0.1540 -0.1116 0.0912 0.0834 0.0929
(0.045) (0.051) (0.052) (0.066) (0.042) (0.042) (0.042)
[0.031] [0.082] [0.083] [0.079] [ 0.062] [0.061] [0.064]

[D] Wagebill: 100 x Log-4 in total wagebill on June 30

4 predicted robot exposure 0.0568 -0.6980 -0.7414 -0.5245 0.4428 0.4176 0.5742
(0.153) (0.173) (0.164) (0.201) (0.251) (0.248) (0.254)
[0.207] [0.366] [0.363] [0.356] [0.316] [0.322] [0.384]

4 net exports in 1000 eper worker Yes No Yes Yes No Yes Yes
4 ICT equipment in eper worker Yes No No Yes No No Yes

Notes: Two-stage least squares (2SLS) IV regressions, where German predicted robot exposure is instrumented with
robot installations across industries in other high-income countries. In all regressions, the variable of interest is the
change in predicted robot exposure per 1000 workers between 1994 and 2014. The estimates in panels A, B, and D are
based N = 402 local labor market regions (Landkreise und kreisfreie Staedte), while the unit of observation in the wage
estimates in panel (C) are N = 7, 235 region x demographic cells. Demographic cells are defined by gender, three
age groups, and three education groups. We only include cells containing at least 10 observations, and perform the
regressions at the region x demographic cell level including fixed effects for demographic cells. The dependent
variable in Panel D is the log-difference total amount of gross salaries paid to employees subject to social security on
June 30 in 1994 and 2014. All specifications include a constant, broad region dummies, demographic control
variables, and employment shares of nine aggregate industry groups, measured in the base year 1994. Standard
errors clustered at the level of 50 aggregate labor market regions in parentheses. Shift-share standard errors in
brackets.
Sources: IFR, Comtrade, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

Panel A in Table 4 presents the results for employment changes. Column 1 repeats
the main estimate from column 4 in Table 3, which was the fully specified model
with the most control variables. The models in columns 2 to 4 use the (percentage)
change in manufacturing employment as the outcome variable. Column 2 has the
same control variables as column 2 of Table 4, namely broad industry employment
shares and regional dummies. The next columns add predicted trade and ICT
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exposure, respectively. The estimates in all three columns show a negative coefficient
and, importantly, the effect size is around one order of magnitude larger than
the effects on total employment. Columns 5 to 7 investigate the impact on
employment in the service sector. The positive coefficients reveal the presence of
substantial reallocation forces, offsetting the adverse impact of the displacement
effects. Approximately, displacement and reallocation effects tend to be of similar
magnitudes, which explains the robust finding of a zero total employment effect.

We re-estimate the models in Panel B with the change in the employment-
to-population ratio as the dependent variable.24 Column 1 shows an effect close
to zero, but again this hides significant displacement in columns 2 to 4 and
strong reallocation effects in columns 5 to 7. Since the sum of the employment-to-
population ratios in the two sectors equals the total employment-to-population ratio
in a region, the coefficients of the fully specified models in 4 and 7 sum up to 1. We
can translate these numbers into head counts.25 This makes the estimates directly
comparable to Acemoglu and Restrepo (2019) for the US, since our E/POP ratio is
calculated differently here (see footnote 24). The numbers are shown in the second
to last row of Panel B. The preferred estimate from column 4 implies a displacement
effect of -1.7 workers per newly installed robot.

In Panel C, we repeat the analysis using the change in local average daily
log wages as the outcome variable. We note that the wage estimates must be
interpreted with some caution. Predicted robot exposure displaces workers at least
in the manufacturing sector, which creates selection since wage outcomes are only
available for employed workers.26 We circumvent those selection issues in section 6
below, when we look at labor earnings directly for exposed individual workers.
The results, by and large, mirror the employment effects. Column 1 shows a small,
negative, and insignificant impact of predicted robot exposure on wage growth.

24We measure employment by all jobs in Germany subject to social security. This yields small E/POP
ratios between 0.25 and 0.5 in our sample since we have excluded civil servants and self-employed
workers. Including civil servants and self-employed workers in the E/POP with data from the German
Federal Statistical Office does not affect our results. See also column 6 of Appendix Table A.4, which
shows no effect of robots on public employment.

25If we have two time periods, Et is job head counts in t, R installed robots, and Pop population,
then:

E2

Pop2
−

E1

Pop1
= β

(
R2 −R1

E1

)
× 1000.

If we assume a constant population, we get:

E2 −E1 = β

(
R2 −R1

E1/Pop1

)
.

Finally, normalizing to one additional robot per 1,000 workers, and using a ratio of the number of jobs
covered by social security relative to the population of 0.28, which is the average value across regions in
1994, we get the numbers from Table 4.

26We conduct our analysis at the demographic group-region cell level, as in Acemoglu and Restrepo
(2019) to deal with the changing observables of employed workers. Using residualized wages from
Mincer regressions gives us very similar effects.
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Consistent with the employment results, however, we see negative effects within
manufacturing in columns 2 to 4, and positive effects in the service sector in columns
5 to 7. The results strongly support the hypothesis of decreased manufacturing labor
demand in regions with higher predicted robot exposure, and an offsetting increase
in labor demand for local services.

Panel D combines the wage and employment information by calculating sectoral
total wage bills (based on the universe of social security records). The results in
columns 1 to 7 strongly support the interpretation of reduced manufacturing labor
demand in regions strongly exposed to automation, but increasing labor demand in
local service industries.

The results represent evidence that the adoption of robots has led to positive
employment spillovers on other local industries in non-manufacturing.27 Our data
allow us to further look at this channel. Table A.4 in the appendix presents
estimates when we split up the non-manufacturing sector into several subsectors.
We differentiate business services, consumer services, construction, and the public
sector. The first category includes employment in establishments that render their
services to other businesses on a contractual basis. This includes information and
communication technology, cleaning, or security. The second category, consumer
services, contains hotels and restaurants, as well as beauty services such as
haircutting.

By far the largest employment effect is on business services with a coefficient
of 0.638. The consumer service coefficient, in contrast, is only estimated to have a
value of 0.051. The other coefficients on construction employment and public sector
employment are close to zero. Positive employment spillovers are, hence, driven by
spending from local firms on local services. This result is consistent with the model
by Acemoglu and Restrepo (2019) where increased robot adoption raises demand
for complementarity inputs by producers. Relatedly, Goldschmidt and Schmieder
(2017) show that task outsourcing has increased within Germany. It is conceivable
that increased automation may be related to changing boundaries of the firm, and
may accelerate these processes. This would be consistent with a positive effect of
automation on business service employment.

The appendix contains important robustness checks to our findings (Table A.2).
After repeating our baseline results, we first check for the presence of pre-trends
by regressing lagged outcome variables on future exposure.28 Second, we restrict
the time window for the analysis to stop before the global great recession in 2007.

27Any negative spillover effects form the displacement forces of automation appear, hence, to be
dominated by new labor demand, at least for service industries. Gathmann et al. (2019) consider the
regional effects of mass layoffs and detect significant negative spillovers. While the displacement effects
we document are economically significant, industrial robots did not trigger mass layoff episodes in
Germany, which limits the scope for negative spillovers.

28The results here imply that labor demand in manufacturing and services was trending in
the opposite direction, so that higher future predicted robots exposure was correlated with higher
manufacturing employment growth.



Dauth, Findeisen, Suedekum, Woessner Adjustment of Labor Markets to Robots 20

Third, we include “marginal workers”. Those very low-paying part-time jobs are
only covered in the social security data starting in 1999. In this robustness check,
we include this group in the worker counts at the end of our observation period,
and count them as zero in the beginning of the period. It turns out that our main
results are not affected. Next, we conduct various checks concerning the regional
dimensions. Leaving out East Germany does not change the results. They also
remain very similar when we include time trends at the level of 16 federal states.
Another robustness check is to use different regional aggregations to define local
labor markets. We change the boundaries, making labor markets broader (reducing
the number of units from 402 to 258 labor market areas used for the “joint task of
the federal government and the states for the improvement of regional economic
structures” (GRW) or to 141 commuting zones delineated by Kosfeld and Werner
(2012)). We observe the same pattern of displacement and reallocation, although
imprecision increases when the sample size decreases.

Finally, we pay special attention to the car industry which plays a dominant
role in the German economy and is highly robotized. We split up the treatment
variable into predicted exposure to robots in automobile production and robots in
other industries. The displacement effect is relatively homogeneous across sectors.
Reallocation is driven by the predicted exposure to robots in automobile production,
in contrast. This suggests that the productivity effects were particularly large in
this sector.29 An alternative way to look at the automotive sector is to distinguish
between automotive and other manufacturing when constructing the outcome
variables, as we show in Panel H. While the effect of robots on other manufacturing
industries is quantitatively similar to the overall effect, we find an exorbitant but
also very imprecisely estimated negative coefficient for car manufacturing. We
conclude that our main results are not exclusively driven by this sector, but are rather
representative for manufacturing as a whole.

3.2.2. Effects Within Manufacturing and Task Shares. So far, we have looked at
displacement and reallocation at the sectoral level. An additional way to split
the data is to separate employment effects within manufacturing. In particular,
predicted robot exposure will plausibly have different effects on routine versus non-
routine jobs even within the sector. Table 5 shows the results for such a sample
split within manufacturing, using employment growth as dependent variable.
Comparing column (1) and (4) from Panel A, one can see how the displacement effect
is more pronounced for routine jobs (coefficients -0.466 and -0.660), as expected.
The point estimate for non-routine jobs from column (7) is much smaller but also
negative (-0.266) and statistically insignificant. As before, Panel B shows the results
using employment-to-population ratios as dependent variable. The coefficients in
columns (4) and (7) add to the total effect in column (1). In contrast to Panel A, the

29It also points to an interaction of automation with trade, since Germany is a large exporter of cars,
and one would expect that productivity effects are increasing in market size.
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TABLE 5. Composition Effects: Routine vs. Non-Routine Intensive Manufacturing

Total Routine Non-Routine

(1) (2) (3) (4) (5) (6) (7)

[A] Employment: % change in total employment between 1994 and 2014

4 predicted robot exposure -0.4663 -0.7920 -0.7785 -0.6601 -0.3773 -0.4531 -0.2656
(0.160) (0.218) (0.205) (0.223) (0.240) (0.233) (0.236)
[0.293] [0.447] [0.447] [0.423] [0.312] [0.278] [0.283]

[B] E/Pop: 100 x4 in employment/population between 1994 and 2014

4 predicted robot exposure -0.0479 -0.0692 -0.0683 -0.0662 0.0180 0.0126 0.0183
(0.027) (0.024) (0.024) (0.026) (0.037) (0.037) (0.039)
[0.030] [0.043] [0.043] [0.041] [0.022] [0.020] [0.021]

Effect of 1 robot -1.7 -2.4 -2.4 -2.3 0.6 0.4 0.6

4 net exports in 1000 eper worker Yes No Yes Yes No Yes Yes
4 ICT equipment in eper worker Yes No No Yes No No Yes

Notes: Two-stage least squares (2SLS) IV regressions, where German predicted robot exposure is instrumented with
robot installations across industries in other high-income countries. In all regressions, the variable of interest is the
change in predicted robot exposure per 1000 workers between 1994 and 2014. The estimates in panels A, B, and D are
based N = 402 local labor market regions (Landkreise und kreisfreie Staedte), while the unit of observation in the wage
estimates in panel (C) are N = 7, 217 region x demographic cells. Demographic cells are defined by gender, three
age groups, and three education groups. We only include cells containing at least 10 observations, and perform the
regressions at the region x demographic cell level including fixed effects for demographic cells. The dependent
variable in Panel D is the log-difference total amount of gross salaries paid to employees subject to social security on
June 30 in 1994 and 2014. All specifications include a constant, broad region dummies, demographic control
variables, and employment shares of nine aggregate industry groups, measured in the base year 1994. Routine
intensive is defined as being employed in an occupation that ranks above the 66th percentile of the share of routine
tasks relative to all tasks (see Autor and Dorn, 2013; Spitz-Oener, 2006). Standard errors clustered at the level of 50
aggregate labor market regions in parentheses. Shift-share standard errors in brackets.
Sources: IFR, Comtrade, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

TABLE 6. Composition Effects: Change in Task-Intensity

(1) (2) (3)
routine abstract manual

Manufacturing

4 predicted robot exposure -0.0939 0.0815 0.0109
(0.024) (0.039) (0.031)
[0.064] [0.061] [0.019]

Notes: Two-stage least squares (2SLS) IV regressions, where German predicted robot exposure is instrumented with
robot installations across industries in other high-income countries. In all regressions, the variable of interest is the
change in predicted robot exposure per 1000 workers between 1994 and 2014. The dependent variable is the
percentage point change in the share of routine / abstract / manual tasks relative to all tasks. Task-intensity is
measured at the level of occupations according to the BIBB/BAuA Survey in 1991. The estimates are based N = 402
local labor market regions (Landkreise und kreisfreie Staedte). The regressions include the full set of control variables as
in column 4 of Table 3. Standard errors clustered at the level of 50 aggregate labor market regions in parentheses.
Shift-share standard errors in brackets.
Sources: IFR, Comtrade, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.
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point estimate from (7) on non-routine jobs is positive in this specification, but also
statistically insignificant.30 These results are not totally conclusive on the strength of
reallocation within the sector.

We obtain clearer results, however, when estimating a version of the empirical
model which uses changes in the task utilization within manufacturing directly.
In Table 6, the dependent variable is the percentage point change in the share
of routine/abstract/manual tasks relative to all tasks in manufacturing in a local
labor market. Columns 1 and 2 document the shift in the task composition of
manufacturing sector jobs associated with automation. The estimates imply almost
an exact offset for the routine and abstract task shares. Later in Section 5, we build
on those results, and show that predicted robot exposure is also strongly associated
with occupational transitions of routine job workers into occupations with a higher
abstract task share, for those worker who are retained by their original employers.

4. Adjust Mechanism I: Reduced Creation of New Jobs for Young Workers

We have documented the presence of substantial displacement and reallocation
effects of automation by using a local labor market approach. In this section,
we leverage the availability of detailed administrative panel data to understand
better which kind of workers are actually displaced and reallocated in response
to automation. One of the main results will highlight that a large portion of the
incidence of displacement and reallocation is borne by young workers, who face
reduced (increased) job creation in the manufacturing (service) sector. However, as
an important qualifier, this does not imply that young workers only bear the costs
of labor market adjustments and are left-behind by automation. In Section 5, we will
show that as a response to predicted robot exposure, labor market entrants also are
more likely to attend college and hold jobs which are more abstract and less routine
intensive. This suggests that net-welfare effect for young entrants could plausibly
also be positive. In addition it should be clarified that reallocation for young workers
only happens in a counterfactual sense, as they start their careers in the service sector
instead of manufacturing.

We analyze the adjustment process by decomposing the employment variables
from Section 3 into mutually exclusive channels. The decomposition is additive
and, hence, easy to interpret. We start by characterizing the displacement effect.
Conceptually, we distinguish between workers who were working in the exposed
manufacturing sector at the start of the observation period in 1994, and non-
incumbents who were not working in manufacturing.

30The coefficients in columns 4 to 7 flip signs from Panel A to B, since A is estimated in growth rates
and B in changes in the absolute number of jobs, normalized by population. More non-routine jobs were
added in those regions which had a higher than average share of non-routine jobs within manufacturing
to begin with. So one obtains a negative effect of predicted robot exposure on growth rates but a positive
one on the absolute number of non-routine jobs within manufacturing.
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The set of different channels for the displacement effect are listed in the seven
columns of Panel A of Table 7. Columns 1 and 2 summarize the outcomes for
incumbent manufacturing workers. They include employment at the same plant,31

and employment at other plants within the manufacturing sector.32 Columns 4
to 6 encompass all margins related to workers not in the manufacturing sector
at the start of the period in 1994. They comprise workers who had not entered
the labor market yet in 1994, workers who were already in the same local labor
market but not in the manufacturing sector, workers who were employed in a
different region, and temporarily non-employed workers in 1994. The coefficients
from columns 1 to 6 add up to the coefficient from column 7, which is the full
effect on manufacturing employment from column 4 of Table 4 and re-stated here
to facilitate the interpretation.

Column 1 in Panel A starts with a – perhaps – surprising finding. Predicted
exposure to automation increases employment at one’s original employer. The effect
is sizable and around a third of the total displacement effect from column 7. We
will devote parts of the next section to explain the mechanisms, and document
how workers relocate within firms across tasks and occupations. While incumbent
workers face a lower layoff risk, this is offset by decreased employment in other
firms in manufacturing, as evidenced by the estimate in column 2.33

These two findings are consistent with the following interpretation(s). Labor
market institutions in the form of firing costs make it costly to lay off workers
even though the tasks previously performed by those workers are now carried out
by industrial robots. At the same time, productivity effects are plausibly occurring
mostly within the same firms adopting robots, which allows the re-shuffling of
workers from automated tasks to other tasks, since new demand for non-automated
task arises in those firms. These two forces explain why robot adoption actually
increases employment within the original plant. In Section 5, we document how
automation is related to the re-shuffling of workers across tasks within plants. In
addition, below, we present (indirect) evidence on how variation in labor market
institutions influences the retainment effect from column 1. However, the estimate
in column 2 shows that – conditional on a separation – workers have a harder time
regaining employment in similar industries, consistent with general reduced labor
demand in robot adopting industries. This leads to reduced employment in the
manufacturing sector for incumbent workers.

The main part of the displacement incidence falls on non-incumbent workers,
however. The negative coefficient in column 3 reveals that the largest burden falls

31In our data, we only observe plants but not firms. On a few occasions in this paper, we use these
term interchangeably.

32In an older version of the paper, we also presented results for employment in different plants within
the original industry. The results are omitted here for brevity.

33These results are in line with Koch et al. (2019), who find that Spanish firms create jobs after
investing in robots. By contrast, Bessen et al. (2019) find that in particular older workers are more likely
to leave firms that invested in automation technologies in a broader sense.
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TABLE 7. Adjustment

Dependent variable:
100 x Number of workers in 2014 / total employment in 1994

Incumbent workers Entrants total

Same plant as in 1994 yes no entered same region, in diff. not
Same sector as in 1994 yes yes labor mkt. diff. sector region emp.

after 1994 in 1994 in 1994 in 1994

(1) (2) (3) (4) (5) (6) (7)

[A] Manufacturing

4 predicted robot exposure 0.1723 -0.2503 -0.2473 -0.0493 -0.0040 -0.0877 -0.4663
(0.051) (0.051) (0.089) (0.027) (0.040) (0.025) (0.160)
[0.080] [0.123] [0.141] [0.044] [0.063] [0.041] [0.293]

[B] Non-Manufacturing

4 predicted robot exposure -0.0504 -0.0376 0.5676 -0.0153 0.2101 0.0499 0.7243
(0.014) (0.027) (0.230) (0.013) (0.059) (0.046) (0.327)
[0.030] [0.027] [0.348] [0.006] [0.113] [0.039] [0.458]

Notes: N = 402 Two-stage least squares (2SLS) IV regressions, where German predicted robot exposure is
instrumented with robot installations across industries in other high-income countries. In this table, the employment
growth rate is additively split up into the contributions of different groups of incumbent workers or workers that
enter the region’s manufacturing (Panel A) or non-manufacturing sector (Panel B) between 1994 and 2014. The
coefficients of columns 1-6 sum up to the coefficient in column 7. In all regressions, the variable of interest is the
change in predicted robot exposure per 1000 workers between 1994 and 2014. The regressions include the full set of
control variables as in column 4 of Table 3. Standard errors clustered at the level of 50 aggregate labor market regions
in parentheses. Shift-share standard errors in brackets.
Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

on young workers, who had not entered the labor market in 1994 (and subsequently
entered in some year between 1995 and 2014). Automation also reduces flows from
the service into the manufacturing sector and lowers entry from unemployment,
as evidenced by columns 4 and 6. The effect sizes, however, are much smaller
compared to the entrants margin. Reduced net-migration, as measured by column
5, plays no role in explaining the displacement force.

Panel B provides the same decomposition for the non-manufacturing sector to
study the reallocation effect. By construction, the sum of columns 1 to 6 equals
the estimate from column 7 (and column 7 from Table 4). We expect zero or only
very small impacts for non-manufacturing incumbent workers, since their task set
is not exposed to automation. This is confirmed in columns 1 and 2. An important
open question is, if the manufacturing displacement experienced by entering labor
market cohorts leads to offsetting gains for young workers in services. The estimate
in column 3 provides the answer and implies gains for young workers. The
larger coefficient in panel B combined with the larger denominator of the outcome
imply that those gains overcompensate the adverse impacts from displacement. If
productivity effects also spill over into the service sector – something which should
be expected, given that tasks in this sector are complements to automated tasks –
predicted robot exposure should presumably also increase labor demand in services
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at other margins. There is indeed a positive effect – shown in column 5 of Panel B –
on pulling in workers into an expanding service sector from other regions.

Given that the incidence of the reallocation effect falls primarily on young
workers, one should expect that the age structure in the manufacturing sector
evolves differently than in the service sector. In the appendix in Table A.5, we
find that automation reduces the average age of workers in the service sector
and increases the average age of manufacturing workers (although the latter
effect is small and imprecisely estimated). Our results are consistent with a two-
way interaction between automation and aging. Acemoglu and Restrepo (2018a)
investigate the effect of an older population on more automation. We find that more
automation leads to an increase in the average age of the working population in
more affected regions. These effects could reinforce each other.

Heterogeneity By Unionization Rates. In this subsection, we present additional
results for the displacement and reallocation effects, splitting labor markets into the
relative strength of trade unions.34 We are not explicit about specific mechanisms
how regional union strength affects outcomes directly. Rather, we interpret it as
a proxy for different labor market institutions strengthening incumbent workers’
rights. Examples include higher wage bargaining power, more powerful works
councils, which are deeply involved in organizational decisions at the firm level
and can negotiate deviations from collective bargaining arrangements in order to
prevent mass layoffs, and so forth. Net trade union density rates, measured as the
fraction of workers who are union members, at the regional level are calculated
using the German Social Economic Panel (GSOEP) in the year 1993.35 To illustrate
heterogeneous impacts, we split local labor markets into either a high- or low worker
protection group.36 The results do not necessarily reflect the causal effect of union
density, since we cannot rule out that those groups also differ in other dimensions,
such as local preferences. However, we gain confidence since controlling for federal-
state fixed-effects does not change the results qualitatively.

Above in this section, we presented a worker retention result: workers in more
exposed local labor markets are more likely to stay with their original plant. Are

34In an older version of this paper (Dauth et al., 2019), we used the vote share of the social-democratic
party (SPD) in the 1980’s as a proxy for the strength of labor market institutions favoring workers. SPD
vote shares in the 1980’s and net union density rates in 1993 are highly but not perfectly correlated with
a coefficient slightly above 0.50. But qualitatively the main findings of this subsection are similar for
both measures.

35The GSOEP is a yearly panel survey of individuals, similar to the US PSID. We calculate union
shares in the GSOEP at the administrative regional classification of so-called Raumordnungsregionen
(ROR), of which there are 96 in the year 1993. Calculating region shares at the county level is,
unfortunately, not possible since some cells are too sparsely filled. The mapping from counties to ROR
is unique so we can assign counties to either being high or low in unionization rates without further
assumptions.

36The split of the 402 counties/local labor markets is not exactly even in Table 8, because, as explained
above, we measure unionization at a higher level of aggregation, namely ROR. We split the sample along
the median of the ROR distribution.
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TABLE 8. Manufacturing Adjustment - by shares union members (SOEP)

Dependent variable:
100 x Number of workers in 2014 / total employment in 1994

Incumbent workers Entrants total

Same plant as in 1994 yes no entered same region, in diff. not
Same sector as in 1994 yes yes labor mkt. diff. sector region emp.

after 1994 in 1994 in 1994 in 1994

(1) (2) (3) (4) (5) (6) (7)

[A] Above median share of union members

4 predicted robot exposure 0.2567 -0.2596 -0.1322 -0.0570 0.0183 -0.0823 -0.2561
(0.069) (0.050) (0.130) (0.050) (0.047) (0.043) (0.248)
[0.121] [0.130] [0.138] [0.060] [0.074] [0.042] [0.280]

[B] Below median share of union members

4 predicted robot exposure 0.1281 -0.2908 -0.4217 -0.0557 -0.0111 -0.1028 -0.7540
(0.084) (0.109) (0.179) (0.026) (0.098) (0.062) (0.371)
[0.077] [0.120] [0.262] [0.063] [0.132] [0.094] [0.543]

Notes: N = 199 (Panel A) and 203 (Panel B). Two-stage least squares (2SLS) IV regressions, where German
predicted robot exposure is instrumented with robot installations across industries in other high-income countries. In
this table, the employment growth rate is additively split up into the contributions of different groups of incumbent
workers or workers that enter the region’s manufacturing sector between 1994 and 2014. The coefficients of columns
1-6 sum up to the coefficient in column 7. In all regressions, the variable of interest is the change in predicted robot
exposure per 1000 workers between 1994 and 2014. The regressions include the full set of control variables as in
column 4 of Table 3. Standard errors clustered at the level of 50 aggregate labor market regions in parentheses.
Shift-share standard errors in brackets.
Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, and SOEP, own calculations.

firms retaining their workers voluntarily at higher rates in the wake of automation,
because they value their firm-specific human capital? Or does this finding capture
high firing costs? We try to examine this in Table 8. Comparing the coefficients in
column 1 from panels A and B reveals that the retention effect is twice as large
in areas with higher worker protection. At least part of the retention, therefore,
seems to reflect institutional constraints on firms to adjust to technological change.
By contrast, conditional on leaving the original plant, workers are not protected
by these institutions any more. Consistent with this, column 2 shows that the
effects of robots on mobility to other plants within the manufacturing sector do
not differ between regions with higher and lower job protection. In columns 3 to
6, we again report the effects on entrants into the local manufacturing sector. Aside
from the lower retention of incumbent workers, the manufacturing sector in low job
protection regions also attracts fewer young entrants, formerly unemployed, and
workers changing between sectors. In total, column 7 shows that the displacement
effect measured by manufacturing employment was much stronger in environments
with low worker protection.
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5. Adjust Mechanism II: Skill Upgrading

In this section, we turn our attention to different mechanisms of adjustment: the
re-assignment of workers to new tasks and the upgrading of skills. The analysis
will establish four new results. First, a majority of workers who are retained by
their firms in the wake of automation are re-assigned to new occupations. Second,
their new occupations feature more abstract and less routine-intensive task contents.
Third, they are higher up in the wage ladder, and are characterized by a higher
college share. Finally, the skill (college) share among labor market entrants increases
significantly, the apprentice share goes down, and the jobs held by labor market
entrants become more abstract and less routine intensive.

Table 9 presents the results from models which analyze the adjustment process
for incumbent manufacturing workers. They all follow the specification with the
most comprehensive set of control variables as in Sections 3 and 4. Our linked
employer-employee data allows us to observe the workplace of every worker at all
points in time. We also observe 3-digit occupation codes, which we aggregate to 54
economically more meaningful occupational fields according to the German Federal
Institute for Vocational Education and Training (Tiemann et al., 2008). We measure
the quality of occupations according to four dimensions: the median wage of all
full-time employees, the share of workers with a college degree, and the intensity
in abstract and routine tasks. For the latter two, we follow Spitz-Oener (2006) and
construct task intensities as the average shares of abstract or routine tasks in all tasks
performed by around 20,000 workers surveyed in the 1991 BIBB/IAB Employment
Survey.37

Panel A starts with a decomposition of the retainment effect, shedding light on
the question how plants keep workers around in the wake of automation. Column
3 repeats this retainment effect from column 1 of Table 7. In columns 1 and 2, the
coefficient is additively decomposed into the contribution of days employed in the
same plant in a worker’s original occupation in 1994, and days employed in other
occupations by defining the dependent variables in this way. The magnitudes imply
that 75% (0.1287/0.1723) of the total effect stem from days worked in a different
occupation.

It is not clear yet to what extent workers profit from those occupational
transitions. To address this, the next set of models in Panels B and C investigate
several dimensions of the occupational quality of jobs. All dependent variables in
these two panels are constructed as follows: First, we measure the quality of each
occupation in terms of either wage, education, or task intensity. Second, for each
worker who stays in the manufacturing sector of her or his original region, we
calculate the difference in occupational quality between 1994 and 2014. Third, we
average those individual-level differences over all workers in each region.

37A third task category is manual tasks, which we omit here as it is mostly relevant for individual-
related services.
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TABLE 9. Occupational Upgrading Within and Across Firms

(1) (2) (3) (4)

[A] Occupational adjustment
Dependent variable:

100 x Number of workers in 2014 /
total employment in 1994

Same plant as in 1994 yes yes yes
Same occupation as in 1994 yes no (total)

4 predicted robot exposure 0.0437 0.1287 0.1723
(0.027) (0.030) (0.051)
[0.025] [0.062] [0.080]

[B] Occupational upgrading: Wages and skills
Dependent variables:

4 log median wage in e 100 x4 college share
Same plant as in 1994 yes no yes no

4 predicted robot exposure 0.0633 0.0258 0.0583 0.0146
(0.024) (0.032) (0.024) (0.022)
[0.046] [0.035] [0.039] [0.016]

[C] Occupational upgrading: Tasks
Dependent variables:

100 x4 abstract task intensity 100 x4 routine task intensity
Same plant as in 1994 yes no yes no

4 predicted robot exposure 0.0719 -0.0227 -0.1229 -0.0470
(0.025) (0.023) (0.028) (0.026)
[0.045] [0.019] [0.077] [0.031]

Notes: N = 402. Two-stage least squares (2SLS) IV regressions, where German predicted robot exposure is
instrumented with robot installations across industries in other high-income countries. In this table, we analyze the
effect of robots on the occupation dimension of exposed workers. In Panel A, the dependent variables are 100x the
number of workers who stay in the manufacturing sector of their original region but show different kinds of job
mobility, relative to total employment in 1994. The coefficients of Panel A, columns 1 and 2 add up to the coefficient
in column 1 of Panel A, Table 7 (also reported in column 3). In Panels B and C, we focus on the occupational quality of
workers who stay in the manufacturing sector of their original region but possibly switch into a different occupation.
The dependent variable in columns 1 and 2 of Panel B is the average difference of the median wage, measured in
1994, of the occupation of workers staying in the same plant in 2014 versus the occupation in 1994. The dependent
variable in columns 3 and 4 of Panel B is the average difference of the percentage of people with a college degree,
measured in 1994, of the occupation of workers staying in the same plant in 2014 versus the occupation in 1994. The
dependent variable in Panel C is the average difference of the abstract (columns 1 and 2) and routine (columns 3 and
4) task intensities, measured in 1994, of the occupation of workers staying in the same plant in 2014 versus the
occupation in 1994. In all regressions, the variable of interest is the change in predicted robot exposure per 1000
workers between 1994 and 2014. The regressions include the full set of control variables as in column 4 of Table 3.
Standard errors clustered at the level of 50 aggregate labor market regions in parentheses. Shift-share standard errors
in brackets. Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

The first measure is the change in median occupational wages. Concretely, we
measure the quality of an occupation at any point in time as the median wage of
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all workers in this occupation in 1994.38 The outcome variable is the average log
difference of the median wage of the occupation a worker held in 2014 versus the
median wage of the occupation the same worker held in 1994. In column 1 of Panel
B, this variable is constructed only from workers who stayed in their initial plant,
while in column 2 the outcome is analogously defined for workers who switched
between plants. Positive coefficients would indicate that predicted robot exposure
leads to occupational upgrading. Column 1 displays a positive coefficient, around
twice the size of the coefficient in column 2. So, on average, higher predicted robot
exposure is associated with occupational mobility up the wage ladder, and the effect
is much stronger within plants, i.e., for workers who were retained by their original
employer.

In column 3 of Panel B, we measure the quality of an occupation at any point
in time as the percentage of workers with a college degree in 1994. The dependent
variable is average the difference in the college share of the occupation a worker held
in 2014 versus the college percentage of the same worker’s occupation in 1994.39

The results imply a positive effect of automation on occupational quality40 and
the comparison with column 4 shows that the effect is again much larger for firm
stayers.41

Finally, Panel C studies the re-assignment of tasks for exposed workers. The
dependent variable in Panel C is the average difference of the abstract (columns
1 and 2) and routine (columns 3 and 4) task intensities, measured in 1994, of the
occupation of workers in 2014 versus their occupation in 1994. Columns 1 and 3
present evidence that automation seems to cause a shift in the careers of workers
away from routine, and towards abstract tasks within plants. The coefficients in
columns 2 and 4 show much smaller effects across plants.

We next turn to human capital adjustments of young cohorts. The first dependent
variable of Table 10 is the change in the share of college educated workers aged
30 or lower. To be included, workers need to hold a degree which requires at
least three years of tertiary education. The positive coefficient indicates that young
people adjust to local automation by increasing their level of education. Column 2
shows that is counteracted by a significant reduction in the apprenticeship share.
Importantly, the table also shows that the adjustment efforts of young workers
extends beyond educational and into occupational choices. In columns 3 and 4 we
measure the effect of robots on changes in the task contents of jobs held by people
below age 30. In more robot exposed regions we observe a stronger reallocation from

38Using median wages from earlier years as measure leaves the results unaffected.
39Again, using lagged college shares produces almost the same results, since skill shares remained

fairly stable during this time period.
40To be clear: this is driven by incumbent workers moving across occupations; there is no evidence

of incumbent workers engaging in further formal training at universities.
41Comparing plant stayers and switchers may be difficult if automation changes the composition

of workers who stay/leave their original firm. We found no significant differences in the difference
between stayers and leavers in highly exposed versus weakly exposed regions in terms of observables.
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TABLE 10. Robots and skill share of people younger than 30

Dependent variable:
100 x4 Share of workers with Task intensity

university apprenticeship abstract routine
degree degree

(1) (2) (3) (4)

4 predicted robot exposure 0.1091 -0.0876 0.0835 -0.0606
(0.048) (0.038) (0.036) (0.023)
[0.051] [0.043] [0.042] [0.039]

Notes: Two-stage least squares (2SLS) IV regressions, where German predicted robot exposure is instrumented with
robot installations across industries in other high-income countries. In this table, we analyze the effect of robots on
occupational quality of younger workers. The estimates are based on N = 402 local labor market regions (Landkreise
und kreisfreie Staedte). The dependent variables is the change in various measures for occupation quality of workers 30
years old or less between 1994 and 2014: Share of workers with university degree (column 1), share of workers with
apprenticeship degree (2), average abstract task intensity (3), and average routine task intensity (4). In all regressions,
the variable of interest is the change in predicted robot exposure per 1000 workers between 1994 and 2014. The
regressions include the full set of control variables as in column 4 of Table 3. Standard errors clustered at the level of
50 aggregate labor market regions in parentheses. Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

routine and towards abstract tasks. These results are robust to using different age
cutoffs than 30; in Appendix Table A.3 we present the results with an age cutoff of
40 as an example.

6. Individual Workers

We now shift the focus from local labor market adjustments to individual workers.
This complements the previous models, because it allows to directly study the
effects of automation on earnings and wages using a more compelling design.
Comparing wage or earnings growth across local labor markets, in contrast, can lead
to biased results because automation changes the composition of employed workers.
By following the same workers, we can circumvent such selection issues.

6.1. Earnings and Employment

Design and Data. We use an exposure to automation design which compares
the outcomes of workers which were employed in a manufacturing industry in
1994.42 We follow the standard practice in the literature and focus on workers with
sufficiently high labor force attachment. This means that we restrict the sample to

42This approach has also been used by Autor et al. (2014) to study the worker-level impacts of trade
shocks. We follow their method here.



Dauth, Findeisen, Suedekum, Woessner Adjustment of Labor Markets to Robots 31

workers who were i) between 22 and 44 years old, ii) earned more than the marginal-
job threshold, and iii) had job tenure for at least two years in the base year 1994.43

Finally, we keep only workers in manufacturing industries that can be matched to
the IFR data. The specification is:

Yij = α · x′ij + β ·∆robotsj + γ · z′j + εij .

Yij represents the cumulated number of days spent in employment – irrespective
if employed in a manufacturing or a different sector – over the 1995-2014 period
in the first set of regressions. In the vector x′ij we include worker-level controls,
measured in the base year 1994: dummies for gender, foreign nationality, three skill
categories, and three tenure categories. In addition we include a full set of age
dummies, federal state dummies, and dummies for six plant size groups. We also
control for the log of yearly earnings of a worker at the start of the period in 1994.

The term ∆robotsj is the change in robot adoption per worker – with the number
of workers fixed at the starting level in 1994 – in industry j. As described in
Section 2, the IFR classification allows to distinguish 20 manufacturing industries.
To account for this, we cluster standard errors at the levels of the IFR classification
with 20 clusters. z′j is a vector of industry controls with dummies for broad industry
groups.44 It also contains changes in trade exposure at the 3-digit level and ICT
exposure at the 2-digit level.45

As for the data in this section, we use a 30 percent random sample of
the Integrated Labor Market Biographies (IEB V12.00.00) of the Institute for
Employment Research. This data is similar to the one introduced in Section 2.1, but
covers the complete employment biographies with daily precision and not only the
main observation on June 30.46 Since East Germany saw very strong wage growth up
until 1995, related to other factors besides automation, we drop workers who were
employed there in 1994 in a robustness check. Our results are unaffected, consistent
with the analogous robustness checks at the regional level.

Table 11 reports descriptive statistics of the variables used in the worker-level
analysis. The average manufacturing worker in our sample has experienced an
exposure equal to ∆robotsj = 24.4 (see panel C). Notice the large variation across
individuals. The worker at the 75th percentile has seen an increase in robot exposure
that is almost five times larger than for the worker at the 25th percentile (26.1
versus 5.5 additional robots per thousand workers), and the comparison between

43Results are very similar, however, when including also workers with lower attachment.
44The categories are, as in Section 3, food products, consumer products, capital goods, and industrial

goods.
45See the data part in Section 2 for a description. See Dauth et al. (2021) for details on the trade

variables.
46Due to its size and design, this data perfectly captures the aggregate data on wages and

employment in Germany. However, the restriction to prime age manufacturing workers with high labor
force attachment in the base year implies that wages are higher and employment careers are more stable
compared to the average German worker.
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TABLE 11. Summary statistics, worker level

Observations 720,562
mean (sd)

[A] Outcomes, cumulated over years following base year
Days employed 5,980 ( 1,986 )
Average daily wage 121.3 ( 71.2 )
100 x earnings / base year earnings 1,949.8 ( 1,000.3 )

[B] Control variables, measured in base year
Base year earnings 38,683 ( 20,599 )
Base year average wage 106.55 ( 55.14 )
Dummy, 1=female 0.211 ( 0.408 )
Dummy, 1=foreign 0.110 ( 0.313 )
Birth year 1960 ( 6 )
Dummy, 1=low skilled 0.160 ( 0.366 )
Dummy, 1=medium skilled 0.751 ( 0.432 )
Dummy, 1=high skilled 0.089 ( 0.285 )
Dummy, 1=tenure 2-4 yrs 0.397 ( 0.489 )
Dummy, 1=tenure 5-9 yrs 0.317 ( 0.465 )
Dummy, 1=tenure ≥10 yrs 0.247 ( 0.431 )
Dummy, 1=plant size ≤9 0.054 ( 0.225 )
Dummy, 1=plant size 10-99 0.224 ( 0.417 )
Dummy, 1=plant size 100-499 0.289 ( 0.453 )
Dummy, 1=plant size 500-999 0.122 ( 0.328 )
Dummy, 1=plant size 1000-9999 0.225 ( 0.418 )
Dummy, 1=plant size ≥10000 0.084 ( 0.277 )
Dummy, 1=food products 0.095 ( 0.293 )
Dummy, 1=textiles 0.028 ( 0.164 )
Dummy, 1=wood, paper products 0.057 ( 0.232 )
Dummy, 1=chemicals, plastic products 0.143 ( 0.350 )
Dummy, 1=metal products 0.201 ( 0.401 )
Dummy, 1=electronics 0.081 ( 0.272 )
Dummy, 1=machines, appliances 0.223 ( 0.417 )
Dummy, 1=vehicles 0.172 ( 0.377 )

∆ net exports / wagebill in % 14.413 ( 57.996 )
∆ ICT equipment in e per worker 254.9 ( 271.7 )

[C] Exposure to robots
∆ robots per 1000 workers 24.400 ( 40.119 )
p10-p90 interval [ -2.721 ; 104.258 ]
p25-p75 interval [ 5.547 ; 26.052 ]

Notes: Summary statistics of worker level variables. Sources: IFR, COMTRADE, EU KLEMS, and IEB V12.00.00, own
calculations.

the 90th and the 10th percentiles is even more dramatic (104.3 versus -2.7). This
reflects the extremely skewed distribution of robot installation across industries that
is illustrated in Figure A.1. The average worker in our sample is employed for 5,980
days during the 20 years after 1994, which amounts to 82% of the duration of this
period (7,305 days). We measure the cumulative earnings over the 20-year period in
multiples of the worker’s earnings in the base year. If, after adjusting for inflation,
a worker earned exactly the base year’s earnings in each year of the period, the
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TABLE 12. Balancing checks, worker level

Unconditional Conditional
coefficient (se) coefficient (se)

Manufacturing workers in 1994 (720,562 observations).
100 × ln base year earnings 0.130 ( 0.076 ) -0.050 ( 0.047 )
100 × ln base year average wage 12.085 ( 7.415 ) -6.145 ( 4.673 )
100 × dummy, 1=female -0.067 ( 0.042 ) 0.056 ( 0.041 )
100 × dummy, 1=foreign 0.027 ( 0.021 ) 0.040 ( 0.015 )
Birth year 0.001 ( 0.001 ) 0.000 ( 0.001 )
100 × dummy, 1=low skilled 0.002 ( 0.034 ) 0.049 ( 0.024 )
100 × dummy, 1=medium skilled 0.023 ( 0.027 ) -0.017 ( 0.033 )
100 × dummy, 1=high skilled -0.025 ( 0.024 ) -0.032 ( 0.019 )
Tenure (in years) 0.016 ( 0.004 ) -0.004 ( 0.001 )
100 × ln plant size 2.614 ( 0.710 ) 1.684 ( 0.801 )

Notes: Coefficients from 2SLS regressions of the respective individual characteristic on ∆ robots per 1000 workers
(instrumented with robot installations across industries in other high-income countries). Control variables are log
base year earnings and indicator variables for gender, foreign nationality, birth year, educational degree (3
categories), tenure (3 categories), plant size (6 categories), manufacturing industry groups (8 categories), and 16
federal states, excluding the respective dependent variable. Earnings are not included in the regression on wages and
vice-versa. In the regressions for skills levels, none of the skill-level variables appear on the right-hand side. Standard
errors clustered by 20 ISIC Rev.4 industries in parentheses. Sources: IFR, COMTRADE, EU KLEMS, and IEB
V12.00.00, own calculations.

outcome would be 1 × 20 × 100 = 2000. In fact, workers have on average almost
exactly retained their base year earnings.

In Table 12, we present a balancing analysis similar to the one at the regional
level, where we regress individual worker characteristics at the start of the period
(in 1994) on future robot exposure. The first column, labeled unconditional, shows
the coefficient when the listed variables at the start of the period are regressed on
predicted robot exposure and a constant. Workers with higher earnings and wages
seem to be more exposed, although the coefficients are not statistically significant
at the 5% level. Demographic characteristics are not strongly associated with robot
exposure. In contrast, firm size and job tenure are. In the second column, we include
our control variables into the regressions. Naturally, when a variable is the left-hand
side variable, all controls which are constructed from that variable are left out in the
respective specification.47 This column shows that foreign and low-skilled workers
faced a slightly higher risk of automation, conditional on all other control variables.
Plant size again is positively associated with automation exposure.

Results. Table 13 shows how workers have adjusted in response to the rise of
industrial robots. In both panels, the coefficients listed in columns 2 to 5 sum up

47Earnings are not included in the regression on wages and vice-versa. In the regressions for skills
levels, none of the skill-level variables appear on the right-hand side.
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TABLE 13. Individual Adjustment to Robot Exposure (Employment)

[A] Industry mobility (1) (2) (3) (4)
all service

employers manufacturing sector
Same employer yes no no

∆ robots per 1000 workers 1.4732 8.3594 -4.4239 -2.4623
(1.393) (1.843) (2.446) (1.442)

[B] Occupational mobility (1) (2) (3) (4) (5)
all jobs same employer other employer

Same occupational field yes no yes no

∆ robots per 1000 workers 1.4732 3.4427 4.9168 -6.0282 -0.8580
(1.393) (1.590) (1.360) (1.619) (0.738)

Notes: Based on 720,562 workers. Two-stage least squares (2SLS) IV regressions, where German robot exposure is
instrumented with robot installations across industries in other high-income countries. The outcome variables are
cumulated days of employment. For column 1, employment days are cumulated over all employment spells in the 20
years following the base year. Panel A: For column 2 employment days are cumulated only when they occurred at
the original workplace. For the other columns, employment days are cumulated only when they occurred at a
different plant in the manufacturing sector (3) or outside the manufacturing sector (4), respectively. Panel B:
Employment days are cumulated only when they occurred in the original occupation and workplace (column 2), in a
different occupation but at the original workplace (3), in the original occupation but at a different workplace (4), and
in a different occupation and workplace (5), respectively. Control variables are log base year earnings and indicator
variables for gender, foreign nationality, birth year, educational degree (3 categories), tenure (3 categories), plant size
(6 categories), manufacturing industry groups (8 categories), and 16 federal states. Standard errors are clustered by
20 ISIC Rev.4 industries in parentheses.

Sources: IFR, Comtrade, EU KLEMS, and IEB V12.00.00, own calculations.

to the total effect in 1. Column 1 shows a small, positive impact on employment.
From column 2 of Panel A, it becomes clear that this positive effect is driven by
increased employment at one’s original plant, echoing the local labor market results
from Table 7. The economic magnitude of this effect is large and around eleven times
the size of the total employment effect. Quantitatively, it translates into an increase
of 171 (= 8.3594 × [26.052 − 5.547]) days of employment (over 20 years) in one’s
original plant for a worker starting out in the manufacturing industry at the 75th
percentile of robot exposure relative to a worker from 25th percentile. This number
grows to 894 days when comparing the 90th and the 10th percentile.

Column 3 shows reduced transitions into other firms within the same industry.48

This is consistent with our interpretation that workers are institutionally protected
from displacement at one’s own firm, but have a hard time finding other gainful
employment within the same industry in the face of automation. Movements to
other industries are reduced, as shown by columns 4 and 5.

48Industry mobility is classified according to the 20 IFR industries, so at the level of robot adoption
variation.
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Panel B extends the analysis to individual adjustments across occupations, using
the same classification of 54 occupational fields as in Section 5. Again, of high
interest here is how adjustments within firms take place, given displacement by
robots. Columns 2 and 3 examine this by splitting employment within spells at the
original plant into time worked in the base year occupation and other occupations
– consequently the two estimates sum up to the coefficient in column 2 of Panel
A. Approximately two thirds of the employment at the original plant effect are
driven by employment in a different occupation. Both coefficients are statistically
and economically significant. The decomposition can also be used to get a total
occupational mobility effect across all firms. We can add columns 2 and 4 to obtain
the effect of robot exposure on time spent in one’s original occupation, and compare
it to the sum of column 3 and 5, which encompasses time spent in a different
occupation. This gives 3.4427− 6.0282 = −2.5855 versus 4.9168− 0.8580 = 4.0588:
in sum, automation has increased occupational mobility.

A popular narrative is that affected workers will have to be flexible and mobile
across tasks and occupations to be "one step ahead" of labor displacing technologies.
Those sets of results first imply that workers in Germany already responded by
switching tasks to the rise of industrial robots. Second, the reassignment of workers
to new tasks happen frequently within a worker’s original firm.

Table 14 extends the analysis to earnings. These models are an important
complement, since they paint a more complete picture about workers’ labor market
performance than looking at employment outcomes alone. Following Autor et al.
(2014), to create the outcome variable, we accumulate all earnings over the whole
period and divide them by average earnings in 1994. The regressions can hence be
interpreted as differences-in-differences designs.

We begin in Panel A by studying the effect on earnings from all sources. In
contrast to the employment effects, one obtains a negative albeit very small and
insignificant point estimate of -0.42. To interpret the coefficient, we calculate the
quartile spread again, comparing an industry at the 75th percentile of robot exposure
to an industry at the 25th percentile. The implied reduction in earnings (over the
whole 20 year period and not per year) would be 8.7% of annual initial earnings,
equivalent to around 3,357 Euro in absolute terms for the average worker.

The coefficient vastly increases to 2.11, and turns highly statistically significant,
for earnings at the original plant. This is offset, approximately equally across the
different channels, by reduced earnings in other plants, industries, and the service
sector, however.

To measure the role of occupational adjustments, Panel B examines the effects of
earnings across occupations. Did occupational switching help workers to respond
to automation? Of particular interest are the coefficients in columns 2 and 3, which
decompose the original plant earnings effect into impacts for the starting versus
other occupations. The split is very close to 75%. Occupational (and presumably
task) transitions within firms, hence, play a large role for the labor earnings impacts
of automation. Columns 4 and 5 complete this picture. While earnings at other firms
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TABLE 14. Individual Adjustment to Robot Exposure (Earnings)

[A] Industry mobility (1) (2) (3) (4)
all service

employers manufacturing sector
Same employer yes no no

∆ robots per 1000 workers -0.4233 2.1093 -1.7920 -0.7406
(1.113) (0.722) (0.988) (0.493)

[B] Occupational mobility (1) (2) (3) (4) (5)
all jobs same employer other employer

Same occupational field yes no yes no

∆ robots per 1000 workers -0.4233 0.6128 1.4965 -2.1939 -0.3388
(1.113) (0.608) (0.481) (0.695) (0.342)

Notes: Based on 720,562 workers. Two-stage least squares (2SLS) IV regressions, where German robot exposure is
instrumented with robot installations across industries in other high-income countries. The outcome variables are
100 x earnings (normalized by earnings in the base year) cumulated over the 20 years following the base year. For
column 1, earnings are cumulated over all employment spells in the 20 years following the base year. Panel A: For
column 2 earnings are cumulated only when they occurred at the original workplace. For the other columns,
employment days are cumulated only when they occurred at a different plant in the manufacturing sector (3) or
outside the manufacturing sector (4), respectively. Panel B: Employment days are cumulated only when they
occurred in the original occupation and workplace (column 2), in a different occupation but at the original workplace
(3), in the original occupation but at a different workplace (4), and in a different occupation and workplace (5),
respectively. Control variables are log base year earnings and indicator variables for gender, foreign nationality, birth
year, educational degree (3 categories), tenure (3 categories), plant size (6 categories), manufacturing industry groups
(8 categories), and 16 federal states. Standard errors clustered by 20 ISIC Rev.4 industries in parentheses.

Sources: IFR, Comtrade, EU KLEMS, and IEB V12.00.00, own calculations.

decrease in all occupations, the decrease is much more pronounced for a worker’s
original occupation.

In the appendix in Table A.6, we also replicate our main results using lagged
outcome variables, showing how individual employment and earnings outcomes
from the pre-period 1978-1994 correlated with future robot exposure. Naturally,
these are for the most part different workers than in the main analysis (i.e.
those being in manufacturing in 1978). Total employment is positively correlated
with future robot exposure already in the pre-period with a coefficient of
similar magnitude. But importantly, future robot does not correlate with increased
employment at one’s original employer. There are also no effects of future robot
exposure on transitions within our out of manufacturing. Next, one can see that
occupational transitions within the original employment spell are increased in the
main analysis, but there is only weak evidence for this in the placebo. Finally, there
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is no evidence of a pre-trend in employment in the same occupation at a different
firm, but a strong reduction in the main specification.49

6.2. Skill or Task Bias?

In the final step of our analysis, we explore heterogeneous impacts across
occupations and skill groups. A very influential literature has investigated the skill
bias of technological change (Katz and Murphy, 1992). A newer literature has instead
emphasized the task bias of technological developments.50 This section presents
new evidence how the advancements of industrial robot technology have affected
different occupation and task groups.

The results are contained in Figure 3, where we show the point estimates of
interaction terms of the increase in robot exposure and 95% confidence intervals,
based on clustered standard errors across the 20 IFR manufacturing industries, for
different groups of workers. The regression models for earnings are the same as in
the last section. So we include controls for skill categories, tenure categories, age,
plant size categories, initial industry, and region – and the dependent variable is
cumulative labor earnings.51 Panel A differentiates six broad occupational categories
that can be found among the individual manufacturing workers in our sample. Panel
B distinguishes three skill categories.

In Panel A, for two occupation groups, the estimated impact is positive but small
and not statistically significant at the conventional 5% level. These are managers
and legal specialists, as well as occupations in the fields of technical science and
natural science. This group encompasses, for example, all kinds of engineers as well
as chemists. Automation through robots has arguably benefited these occupations,
which are very highly skilled and heavily rely on cognitive-intensive tasks.

In the middle of the spectrum, with small and negative coefficients, one
finds the point estimates for clerical/sales workers and a bundle of occupations,
encompassing e.g. security and transportation workers. The common theme here
is that the task set of those occupations is mostly non-routine and, hence, at least
during the period we study, technically harder to automate. Interestingly, the rents
from robots are seemingly passed on at higher rates to the set of skilled, technical
occupations discussed in the preceding paragraph.

The next lines present the results for a set of occupations, which are suspected
to be strongly exposed to replacement. Indeed, we find significant earnings losses
mainly for machine operators. Industrial robots – by definition – do not require a
human operator anymore but have the potential of conducting many production

49The appendix table also contains the lagged outcome variable checks for earnings as the dependent
variable.

50See Acemoglu and Autor (2011) for a survey of both literatures and Autor and Dorn (2013) or Goos
et al. (2014) for prominent empirical applications.

51We obtain similar effects for wages but prefer the earnings models since they avoid the classical
selection problem that wages are not observed for non-employed people.
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(A) Occupation: Heterogenous Impacts

(B) Education: Heterogenous Impacts

Notes: The figures report the coefficients of interaction terms of ∆ predicted robot exposure per 1000 workers and
dummies indicating the respective worker group. Two-stage least squares (2SLS) IV regressions, where German
robot exposure is instrumented with robot installations across industries in other high-income countries. The
outcome variables are 100 x earnings (normalized by earnings in the base year) cumulated over the 20 years
following the base year. In panel A, occupations base on the definition of aggregate occupational fields by the
German Federal Institute for Vocational Education and Training (BIBB) with the following modifications: Sales and
clerical occupations are combined and agriculture, mining, and construction (that would have a point estimate of
zero with a huge standard error) are omitted. In panel B, high skilled is defined as having a degree from a university
or university of applied sciences, and medium skilled is defined as having a vocational training degree. All other
educational levels are subsumed as low skilled. All regressions include the same full set of control variables as in
Table 14. The confidence intervals are constructed from standard errors clustered by 20 ISIC Rev.4 industries.

FIGURE 3. Heterogeneous earnings effects by occupation and education
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steps autonomously. Robots therefore directly substitute the task sets of this group.
The point estimate here implies that a manufacturing worker at the third quartile
of exposure sees an earnings reduction of around 41% of initial annual earnings,
relative to a worker at the first quartile of exposure. A qualitatively similar finding
is obtained for workers in processing and maintenance, but the effect size here is
only a half of the effect for machine operators.

A second natural way to cut the data is to consider impacts across education
groups, following an enormous literature investigating how technological change
affects relative skill demand. In the German context, because of the prevalence of
the apprenticeship system, it makes sense to split the population not just into two,
but into three skill groups. In Panel B, high skilled is defined as having a degree
from a university or college, and medium skilled is defined as having completed a
vocational training degree. All other educational levels are subsumed as low skilled
(i.e., high school graduates and high school dropouts). Completed apprenticeship is
the typical profile for manufacturing workers in Germany, accounting for almost
75% of all individuals in the sample. 16% are low-skilled and 9% high-skilled
according to the classification.

The general take-away here is that occupations represent a much more powerful
cut of the data. Although for each of the three skill groups, sample sizes are much
larger than for the occupations split, confidence bands are much wider. The figure
shows approximately equal negative point estimates for low- and medium-skilled
workers. In contrast, college-educated workers see earnings increases.52

7. Conclusion

Many people foresee a further rise of robots, artificial intelligence, and other
automation technologies, which can potentially disrupt labor markets. The small
but growing empirical literature on this topic, most importantly Acemoglu and
Restrepo (2019) and Graetz and Michaels (2018), have documented the (negative)
effects of industrial robots on employment and wages and (positive) impacts on
productivity. Nevertheless, there has been little work on studying the adjustment
processes of labor markets and its main actors (workers and firms) in response
to new automation technologies. This paper has focused on Germany, whose
manufacturing sector is among the robotized ones in the world. Administrative
labor market data provides us with a rare longitudinal perspective how workers
and firms have responded to the increase automation that happened between 1994
and 2014.

The results paint a nuanced picture. They also point to a strong interaction with
labor market institutions. Relatively strong protections for incumbent workers shift

52We also show results by initial earnings tercile in Appendix Figure A.2. In line with the skill results,
automation impacts seem to be homogeneous.



Dauth, Findeisen, Suedekum, Woessner Adjustment of Labor Markets to Robots 40

the incidence of job displacement on young workers and labor market entrants.
In order to retain workers, whose task sets were automated, we observe notable
transition into new occupations and tasks at the same workplace. We find several
pieces of evidence that these transitions contribute significantly to soften the blow
of automation. Encouragingly, the data suggests that skill upgrading goes hand-in-
hand with those transitions. Such skill upgrading is also observed for young workers
and labor market entrants.

Labor market institutions are an important mediator of the effects of
technological advances. How the next generation of advances in AI, machine
learning, and new manufacturing technologies will impact workers, will also
depend on the future design of these institutions. We believe these questions should
be investigated with more empirical evidence on the interaction, but also theoretical
work incorporating institutional aspects and the frictions inherent in labor markets.
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Appendix

(A) German robots.

(B) US robots.

FIGURE A.1. Industry-level distribution of increase in number of robots

Notes: The figure displays the change in the number of robots per thousand workers by ISIC Rev.4 industries (German
Classification of Economic Activities, Edition 2008), for the period 1994-2014. Increase in the number of US robots in
panel (b) is also normalized by German industry-level employment.
Source: International Federation of Robotics (IFR) and BHP 7514 v1, own calculations.
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Notes: The figures report the coefficients of interaction terms of ∆ predicted robot exposure per 1000 workers and
dummies indicating the respective worker group. Two-stage least squares (2SLS) IV regressions, where German
robot exposure is instrumented with robot installations across industries in other high-income countries. The
outcome variables are 100 x earnings (normalized by earnings in the base year) cumulated over the 20 years
following the base year. All regressions include the same full set of control variables as in Table 14. The confidence
intervals are constructed from standard errors clustered by 20 ISIC Rev.4 industries.

FIGURE A.2. Heterogeneous earnings effects by earnings tercile
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TABLE A.1. Balancing tests for regional characteristics in 1978 and 1984

Dependent variable:
ln(residualized % Unemp. % high % un- % manuf.

wage) rate skilled skilled employment

(1) (2) (3) (4) (5)

[A1] Unconditional, 1978

4 predicted robot exposure 0.2522 -0.0953 0.3009 0.0038 0.5793
(0.040) (0.069) (0.057) (0.011) (0.071)
[0.238] [0.106] [0.299] [0.012] [0.436]

R2 0.078 0.014 0.080 -0.000 0.157

[A2] Conditional on full controls, 1978

4 predicted robot exposure -0.0124 0.0047
(0.036) (0.012)
[0.042] [0.008]

R2 0.856 0.984

[B1] Unconditional, 1984

4 predicted robot exposure 0.2545 0.2941 0.0029 -0.0317 0.6070
(0.029) (0.071) (0.012) (0.045) (0.060)
[0.246] [0.286] [0.018] [0.049] [0.451]

R2 0.103 0.084 0.000 0.001 0.193

[B2] Conditional on full controls, 1984

4 predicted robot exposure 0.0445 -0.0252
(0.042) (0.100)
[0.050] [0.055]

R2 0.855 0.706

Notes: N = 325 West German local labor market regions (Landkreise und kreisfreie Staedte, data for East Germany not
available before 1990). Two-stage least squares (2SLS) IV regressions, where German predicted robot exposure is
instrumented with robot installations across industries in other high-income countries. Each entry represents the
coefficient of a regression of the respective variable on the change in predicted robot exposure per 1000 workers
between 1994 and 2014. The dependent variable in column 1 is the regional average residual of a worker level
regression of log wage on dummies for gender, education, and a squared polynomial of age. All specifications
include a constant. In panel B, we control for broad region dummies (west (reference); north; south; or east),
employment shares of female, foreign, age≥ 50, medium skilled (with completed apprenticeship), and high skilled
(with a university-degree) workers relative to total employment (reference category: unskilled workers and with
unknown education), broad industry shares (agriculture (reference); food products; consumer goods; industrial
goods; capital goods; construction; consumer related services; business related services; public sector), and the
change in German net exports vis-à-vis China and 21 Eastern European countries (in 1000 eper worker), and the
change in ICT equipment (in eper worker), both between 1994 and 2014. Standard errors clustered at the level of 50
aggregate labor market regions in parentheses. Shift-share standard errors in brackets.
Sources: IFR, Comtrade, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.
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TABLE A.2. Robustness checks

Employment Average Wages

(1) (2) (3) (4) (5) (6)
Total Manuf. Non-Manuf. Total Manuf. Non-Manuf.

Baseline Results 1994-2014

4 predicted robot exposure 0.0686 -0.4663 0.7243 -0.0402 -0.1116 0.0929
(0.137) (0.160) (0.327) (0.045) (0.066) (0.042)
[0.177] [0.293] [0.458] [0.031] [0.079] [0.064]

N 402 402 402 7235 6896 7231

[A1] Pre-Trends 1984-1994

4 predicted robot exposure 0.2334 0.3532 0.2135 0.0179 -0.0273 0.0540
(0.185) (0.223) (0.158) (0.028) (0.031) (0.034)
[0.133] [0.229] [0.116] [0.025] [0.022] [0.045]

N 325 325 325 5828 5224 5810

[A2] Include lagged dependent outcome (to check for mean reversion) 1984-1994

4 predicted robot exposure -0.0600 -0.4550 0.5409 -0.0397 -0.1787 0.1237
(0.179) (0.171) (0.354) (0.043) (0.062) (0.036)
[0.136] [0.247] [0.403] [0.029] [0.074] [0.077]

Outcome in 1984-1994 0.3778 0.2945 0.3632 -0.2133 -0.1741 -0.2347***
(0.108) (0.090) (0.118) (0.032) (0.040) (0.024)

N 325 325 325 5828 5224 5810

[B] 1994-2007

4 predicted robot exposure 0.2004 -0.1328 0.3985 0.0176 -0.0175 0.0822
(0.118) (0.223) (0.266) (0.043) (0.087) (0.055)
[0.143] [0.270] [0.202] [0.040] [0.109] [0.057]

N 402 402 402 7235 6897 7231

[C] Include "marginal" workers

4 predicted robot exposure 0.0347 -0.4736 0.6934 -0.0402 -0.1116 0.0929
(0.144) (0.162) (0.336) (0.045) (0.066) (0.042)
[0.176] [0.297] [0.449] [0.031] [0.079] [0.064]

N 402 402 402 7235 6896 7231

[D] West Germany

4 predicted robot exposure 0.0044 -0.4619 0.6849 -0.0466 -0.1618 0.1078
(0.154) (0.170) (0.330) (0.044) (0.064) (0.041)
[0.138] [0.258] [0.416] [0.031] [0.077] [0.069]

N 325 325 325 5849 5545 5845

[E] Federal state dummies

4 predicted robot exposure 0.0593 -0.4472 0.7155 -0.0481 -0.1480 0.0987
(0.147) (0.165) (0.331) (0.046) (0.067) (0.042)
[0.174] [0.282] [0.427] [0.032] [0.085] [0.062]

N 402 402 402 7235 6896 7231

[F1] 258 Local labor markets

4 predicted robot exposure -0.1074 -0.6404 0.5218 -0.0431 -0.0940 0.1026
(0.153) (0.293) (0.214) (0.064) (0.071) (0.054)
[0.168] [0.441] [0.291] [0.036] [0.093] [0.070]

N 258 258 258 4643 4489 4643
[F2] 141 Local labor markets

4 predicted robot exposure 0.0668 -0.4073 0.4271 -0.0259 0.0164 0.1210
(0.301) (0.409) (0.340) (0.064) (0.108) (0.066)
[0.308] [0.439] [0.408] [0.054] [0.130] [0.083]

N 141 141 141 2538 2489 2538

[G] Split automotive and other manufacturing in treatment variables

4 predicted robot exposure 0.0828 -0.4372 0.7148 -0.0414 -0.1152 0.0997
automobile industry (0.130) (0.152) (0.308) (0.045) (0.067) (0.041)

[0.232] [0.332] [0.452] [0.031] [0.078] [0.049]
4 predicted robot exposure -0.0940 -0.4729 0.0736 -0.0738 -0.1083 -0.0584

other industries (0.275) (0.366) (0.358) (0.066) (0.115) (0.055)
[0.215] [0.535] [0.295] [0.071] [0.123] [0.071]

N 402 402 402 7235 6896 7231

[H] Split automotive and other manufacturing in outcome variables
total manuf. car manuf. other manuf. total manuf. car manuf. other manuf.

4 predicted robot exposure -0.4663 -5.4236 -0.5796 -0.1122 -0.2943 -0.1461
(0.160) (21.910) (0.188) (0.067) (0.139) (0.087)
[0.293] [20.667] [0.343] [0.078] [0.139] [0.084]

N 402 382 402 6896 2830 6866

Notes: This table presents modifications the baseline specifications for employment and average wages as of
columns 1, 4 and 7 of Table 4. The dependent variables are employment growth rates (column 1-3) and
log-differences in average wages (column(4-6). Standard errors clustered at the level of 50 aggregate labor market
regions in parentheses. Shift-share standard errors in brackets.
Sources: IFR, COMTRADE, EU KLEMS, and BHP 7514 v1, own calculations.
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TABLE A.3. Robots and skill share of people younger than 40

Dependent variable:
100 x4 Share of workers with Task intensity

university apprenticeship abstract routine
degree degree

(1) (2) (3) (4)

4 predicted robot exposure 0.1111 -0.1106 0.0809 -0.0601
(0.055) (0.040) (0.035) (0.019)
[0.055] [0.062] [0.042] [0.039]

Notes: In this table, we analyze the effect of robots on occupational quality of younger workers. The estimates are
based on N = 402 local labor market regions (Landkreise und kreisfreie Staedte). The dependent variables is the change
in various measures for occupation quality of workers 40 years old or less between 1994 and 2014: Share of workers
with university degree (column 1), share of workers with apprenticeship degree (2), average abstract task intensity
(3), and average routine task intensity (4). In all regressions, the variable of interest is the change in robot predicted
exposure per 1000 workers between 1994 and 2014. The regressions include the full set of control variables as in
column 4 of Table 3. Standard errors clustered at the level of 50 aggregate labor market regions in parentheses.
Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.

TABLE A.4. Disaggregating the Service Sector

Dependent variable:
100 x 2014 employment in industry / total non-manuf. employment in 1994

(1) (2) (3) (4) (5) (6)

[A] Broad industry groups

Non-Manuf. Agg/Mining Constr. Cons. serv. Business serv. Public sect.

4 predicted robot exposure 0.7243 0.0196 -0.0218 0.0510 0.6378 0.0309
(0.327) (0.020) (0.027) (0.062) (0.270) (0.039)
[0.458] [0.027] [0.033] [0.053] [0.366] [0.055]

Notes: N = 402. In this table, the employment growth rate in the non-manufacturing sector is the contributions of
different industries. The dependent variables are constructed as 100x the number of employees in 2014 in each
industry relative to total non-manufacturing employment in 1994. Consequently, the coefficients in each panel sum
up to the coefficient in column 7 of panel A, Table 4. In all regressions, the variable of interest is the change in
predicted robot exposure per 1000 workers between 1994 and 2014. The regressions include the full set of control
variables as in column 4 of Table 3. Standard errors clustered at the level of 50 aggregate labor market regions in
parentheses. Shift-share standard errors in brackets.

Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.
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TABLE A.5. Change in average age

Dependent variable:
change in average age between 1994 and 2014
Manufacturing Non-manufacturing

(1) (2)

4 predicted robot exposure 0.1096 -2.4257
(0.810) (1.225)
[1.012] [1.721]

Notes: N = 402. The dependent variable is the change in the average age of workers in 1994 vs. 2014. In all
regressions, the variable of interest is the change in predicted robot exposure per 1000 workers between 1994 and
2014. The regressions include the full set of control variables as in column 4 of Table 3. Standard errors clustered at
the level of 50 aggregate labor market regions in parentheses. Shift-share standard errors in brackets.
Sources: IFR, COMTRADE, EU KLEMS, BEH V10.01.00, and BHP 7514 v1, own calculations.
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TABLE A.6. Pre-trends for Individual Adjustment to Robot Exposure

[A] Industry mobility (1) (2) (3) (4)
all service

employers manufacturing sector
Same employer yes no no

[A1] Employment
∆ robots per 1000 workers 1.9012 0.5052 2.0827 -0.6867

(0.553) (2.108) (1.603) (1.000)

[A2] Earnings
∆ robots per 1000 workers 0.5034 0.0173 0.6785 -0.1923

(0.417) (0.810) (0.533) (0.302)

[B] Occupational mobility (1) (2) (3) (4) (5)
all jobs same employer other employer

Same occupational field yes no yes no

[B1] Employment
∆ robots per 1000 workers 1.9012 -0.8999 1.4051 0.1293 1.2668

(0.553) (2.064) (0.779) (1.284) (0.669)

[B2] Earnings
∆ robots per 1000 workers 0.5034 -0.5178 0.5351 0.0210 0.4651

(0.417) (0.741) (0.301) (0.391) (0.221)

Notes: Based on 770,360 workers. Two-stage least squares (2SLS) IV regressions, where German robot exposure is
instrumented with robot installations across industries in other high-income countries. The outcome variables are
days of employment (Panels A1, B1) and 100 x earnings (normalized by earnings in the base year, panels A2, B2),
each cumulated over the 16 years following the base year 1978 and scaled to conform to a 20-year period. For column
1, employment days are cumulated over all employment spells in the 20 years following the base year. Panel A: For
column 2 the outcomes are cumulated only when they occurred at the original workplace. For the other columns,
employment days are cumulated only when they occurred at a different plant in the manufacturing sector (3) or
outside the manufacturing sector (4), respectively. Panel B: Employment days are cumulated only when they
occurred in the original occupation and workplace (column 2), in a different occupation but at the original workplace
(3), in the original occupation but at a different workplace (4), and in a different occupation and workplace (5),
respectively. Control variables are log base year earnings and indicator variables for gender, foreign nationality, birth
year, educational degree (3 categories), tenure (3 categories), plant size (6 categories), manufacturing industry groups
(8 categories), and 16 federal states. Standard errors are clustered by 20 ISIC Rev.4 industries in parentheses.
Sources: IFR, Comtrade, EU KLEMS, and IEB V12.00.00, own calculations.


